Analysis of a Frontal Impact of a Formula SAE Vehicle

David Rising
Jason Kane
Nick Vernon
Joseph Adkins
Dr. Craig Hoff
Dr. Janet Brelin-Fornari

Kettering University
Overview

- Introduction
 - Formula SAE
 - Impact Attenuator Rules
 - Methodology
- Evaluation Criteria
 - HIC, Neck Loads and Moments, Nij, Femur Loads
- Testing Procedures
 - Baseline Testing, Pulse Shape Comparison, Critical Speed Test
- Results
 - Comparison of evaluation criteria
 - Kinematic Analysis using high speed video
- Conclusions
Introduction - Formula SAE

- Worldwide collegiate competition
- Students conceive, design, and fabricate small formula style cars
- Driver risks have never been tested in a crash environment
3.3.6.4 Impact Attenuator Data Requirement

- The team must submit calculations and/or test data to show that their Impact Attenuator, when mounted on the front of the vehicle with a total mass of 300 kgs (661 lbs) and run into a solid, non-yielding impact barrier with a velocity of impact of 7.0 m/s (23 ft/s), would give an average deceleration of the vehicle not to exceed 20 g.

- Does not specify deceleration time-history pulse shape.
Introduction – Methodology

- Evaluate the Impact Attenuator rule based on ATD Injury Criteria
- Explore the “Safety Envelope” by increasing impact speeds
- Evaluate Pulse Shape
- Kinematic Analysis Using High Speed Video
- Evaluate HANS Device Effectiveness
Typical Test

Test Conditions
• 7.0 m/s
• 16.5 g avg
• 35 ms
Evaluation Criteria - HIC

- Head Injury Criteria (HIC) is used to evaluate the severity of head trauma based on accelerations.
- HIC consists of two criterion, HIC_{36} and HIC_{15}.
- HIC_{36} and HIC_{15} calculate the highest average acceleration over a 36 ms and 15 ms period respectively.
- Values for HIC_{36} that exceed 1000 and values of HIC_{15} that exceed 700 represent a 31% chance of skull fracture.
Evaluation Criteria - Nij

- N_{ij} criteria is based on the resultant neck loads and moments experienced by the ATD.
- N_{ij} represents the four major combinations of neck loading in a frontal crash:
 - N_{ce}: Compression load and Extension moment
 - N_{cf}: Compression load and Flexion moment
 - N_{te}: Tension load and Extension moment
 - N_{tf}: Tensions load and Flexion moment
- N_{ij} values that exceed 1.0 and individual load and moment values that exceed their IARV represent a 22% chance of AIS 3 neck injury.
Evaluation Criteria - Femur

- Axial load cell in femur measures compression and tension loads

- Axial loads that exceed 10,000 N represent a 35% chance of a moderate injury to the femur
Procedure

- **Baseline Test**
 - Replicate as close as possible the deceleration due to the impact attenuator: 7.0 m/s, 20 g average, 35 ms pulse

- **Pulse Shape Comparison**
 - Increased speed to 12.5 m/s, average of 16 g, 80 ms pulse
 - Three pulse shapes compared: early high-g peak, constant g, and late high-g peak
 - Each pulse shape compared both with and without the use of a HANS device

- **Critical Speed Test**
 - Increased impact speed until Injury Assessment Reference Values were exceeded
 - Test specifications: 15.6 m/s, 80 ms pulse, 20 g average deceleration
 - Utilized late high-g pulse shape and was tested with and without HANS
Early High-g Pulse
Constant-g Pulse
Late High-g Pulse
Results – Baseline

- Showed no condition where IARV were exceeded
- Test one, two, and three values were negligible when compared to the IARV
- Many values in test four were much closer to the IARV
 - May be due to much higher initial velocity (11.2 m/s) and average deceleration (27.6) than tests one, two, and three
- Femur load cell was not utilized
Results - Baseline

<table>
<thead>
<tr>
<th>Test</th>
<th>Average Acceleration (g's)</th>
<th>V (m/s)</th>
<th>Tension Neck Load (N)</th>
<th>Compression Neck Load (N)</th>
<th>Flexion Neck Moment (N-m)</th>
<th>Extension Neck Moment (N-m)</th>
<th>N<sub>ce</sub></th>
<th>N<sub>le</sub></th>
<th>N<sub>cf</sub></th>
<th>N<sub>lf</sub></th>
<th>Peak Resultant Head Accel (g's)</th>
<th>HIC<sub>se</sub></th>
<th>HIC<sub>ts</sub></th>
<th>Axial Femur Load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARV</td>
<td></td>
<td>4170</td>
<td>-4000</td>
<td>310</td>
<td>-135</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>700</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Baseline Test #1</td>
<td>15.7</td>
<td>6.9</td>
<td>381.7</td>
<td>-413.7</td>
<td>34.17</td>
<td>-25.35</td>
<td>0.240</td>
<td>0.214</td>
<td>0.057</td>
<td>0.165</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Baseline Test #2</td>
<td>16.7</td>
<td>7.1</td>
<td>379.3</td>
<td>-475.3</td>
<td>35.14</td>
<td>-31.41</td>
<td>0.230</td>
<td>0.266</td>
<td>0.057</td>
<td>0.171</td>
<td>30.6</td>
<td>39.9</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Baseline Test #3</td>
<td>16.6</td>
<td>6.9</td>
<td>394.5</td>
<td>-449.1</td>
<td>33.1</td>
<td>-32.45</td>
<td>0.200</td>
<td>0.296</td>
<td>0.029</td>
<td>0.158</td>
<td>36.2</td>
<td>43.4</td>
<td>43.4</td>
<td>-</td>
</tr>
<tr>
<td>Baseline Test #4</td>
<td>27.6</td>
<td>11.2</td>
<td>2346</td>
<td>-413.4</td>
<td>97.47</td>
<td>-101.1</td>
<td>0.293</td>
<td>0.962</td>
<td>0</td>
<td>0.669</td>
<td>69.5</td>
<td>394.8</td>
<td>224</td>
<td>-</td>
</tr>
</tbody>
</table>
Results - Baseline

- ATD did not experience maximum acceleration until after 35 milliseconds

Test Conditions:
- Baseline Test #4
Results - Pulse Shape

- No condition where IARVs were exceeded
 - On average the constant-g measured values exceeded that of the early-g and late-g pulses
 - The average initial velocity of the constant-g pulse was also 1 m/s higher than the early-g pulse and 2.5 m/s higher than the late-g pulse
 - The addition of the HANS device reduced the tension neck load in every test
Results – Pulse Shape

<table>
<thead>
<tr>
<th>Test</th>
<th>Average Acceleration (g's)</th>
<th>ΔV (m/s)</th>
<th>Tension Neck Load (N)</th>
<th>Compression Neck Load (N)</th>
<th>Flexion Neck Moment (N-m)</th>
<th>Extension Neck Moment (N-m)</th>
<th>N_ex</th>
<th>N_xx</th>
<th>N_d</th>
<th>N_y</th>
<th>Peak Resultant Head Accel (g's)</th>
<th>HIC<sub>g</sub></th>
<th>HIC<sub>c</sub></th>
<th>Axial Femur Load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARV</td>
<td></td>
<td>4170</td>
<td>-4000</td>
<td>310</td>
<td>-135</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>700</td>
<td>10000</td>
</tr>
<tr>
<td>Early High-g #1</td>
<td>16.9</td>
<td>11.6</td>
<td>3131</td>
<td>-927.8</td>
<td>29.91</td>
<td>-47.7</td>
<td>0.651</td>
<td>0.426</td>
<td>0</td>
<td>0.535</td>
<td>78</td>
<td>421</td>
<td>251</td>
<td>2256</td>
</tr>
<tr>
<td>Early High-g #2</td>
<td>15.6</td>
<td>11.6</td>
<td>3115</td>
<td>-814.6</td>
<td>41.42</td>
<td>-45.94</td>
<td>0.344</td>
<td>0.481</td>
<td>0</td>
<td>0.582</td>
<td>74</td>
<td>420</td>
<td>249</td>
<td>1821</td>
</tr>
<tr>
<td>Early High-g HANS #1</td>
<td>15.8</td>
<td>11.2</td>
<td>1862</td>
<td>-710.4</td>
<td>64.29</td>
<td>-55.64</td>
<td>0.469</td>
<td>0.328</td>
<td>0</td>
<td>0.433</td>
<td>75</td>
<td>400</td>
<td>258</td>
<td>2342</td>
</tr>
<tr>
<td>Early High-g HANS #2</td>
<td>17.6</td>
<td>12.1</td>
<td>1876</td>
<td>-270.9</td>
<td>71.23</td>
<td>-41.67</td>
<td>NA</td>
<td>0.477</td>
<td>0.117</td>
<td>0.505</td>
<td>68</td>
<td>507</td>
<td>312</td>
<td>4043</td>
</tr>
<tr>
<td>Constant-g #1</td>
<td>17.7</td>
<td>12.5</td>
<td>3240</td>
<td>-950.3</td>
<td>19.88</td>
<td>-71.12</td>
<td>0.651</td>
<td>0.426</td>
<td>0</td>
<td>0.535</td>
<td>52</td>
<td>450</td>
<td>281</td>
<td>3866</td>
</tr>
<tr>
<td>Constant-g #2</td>
<td>16.8</td>
<td>12.5</td>
<td>3631</td>
<td>-1011</td>
<td>25.16</td>
<td>-73.38</td>
<td>0.691</td>
<td>0.504</td>
<td>0</td>
<td>0.614</td>
<td>55</td>
<td>557</td>
<td>306</td>
<td>4877</td>
</tr>
<tr>
<td>Constant-g HANS #1</td>
<td>18.2</td>
<td>12.5</td>
<td>2066</td>
<td>-1184</td>
<td>38.29</td>
<td>-57.52</td>
<td>0.608</td>
<td>0.328</td>
<td>0</td>
<td>0.398</td>
<td>63</td>
<td>587</td>
<td>364</td>
<td>4614</td>
</tr>
<tr>
<td>Constant-g HANS #2</td>
<td>17.5</td>
<td>12.5</td>
<td>1370</td>
<td>-870.6</td>
<td>48.18</td>
<td>-65.26</td>
<td>0.695</td>
<td>0.315</td>
<td>0.152</td>
<td>0.25</td>
<td>62</td>
<td>423</td>
<td>321</td>
<td>3581</td>
</tr>
<tr>
<td>Late High-g #1</td>
<td>16.6</td>
<td>12.1</td>
<td>3297</td>
<td>-505.2</td>
<td>15.58</td>
<td>-31.74</td>
<td>0.245</td>
<td>0.324</td>
<td>0</td>
<td>0.534</td>
<td>55</td>
<td>449</td>
<td>273</td>
<td>484</td>
</tr>
<tr>
<td>Late High-g #2</td>
<td>12.9</td>
<td>11.2</td>
<td>2641</td>
<td>-461.3</td>
<td>22.86</td>
<td>-22.81</td>
<td>0.195</td>
<td>0.173</td>
<td>0</td>
<td>0.425</td>
<td>54</td>
<td>240</td>
<td>149</td>
<td>353</td>
</tr>
<tr>
<td>Late High-g HANS #1</td>
<td>17.7</td>
<td>12.5</td>
<td>1370</td>
<td>-516.8</td>
<td>47.49</td>
<td>-54.96</td>
<td>0.433</td>
<td>0.409</td>
<td>0.093</td>
<td>0.282</td>
<td>66</td>
<td>437</td>
<td>354</td>
<td>1485</td>
</tr>
<tr>
<td>Late High-g HANS #2</td>
<td>14.5</td>
<td>12.5</td>
<td>1590</td>
<td>-509.5</td>
<td>42.29</td>
<td>-52.78</td>
<td>0.387</td>
<td>0.4</td>
<td>0.094</td>
<td>0.331</td>
<td>67</td>
<td>452</td>
<td>373</td>
<td>4394</td>
</tr>
</tbody>
</table>
Results – Pulse Shape

<table>
<thead>
<tr>
<th>Test</th>
<th>V (m/s)</th>
<th>Average Acceleration (g's)</th>
<th>ΔV (m/s)</th>
<th>Tension Neck Load (N)</th>
<th>Compression Neck Load (N)</th>
<th>Flexion Neck Moment (N-m)</th>
<th>Extension Neck Moment (N-m)</th>
<th>N_e</th>
<th>N_c</th>
<th>N_f</th>
<th>N_e</th>
<th>Peak Resultant Head Accel (g's)</th>
<th>HIC_e</th>
<th>HIC_c</th>
<th>Axial Femur Load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early High-g Avg</td>
<td>16.3</td>
<td>11.6</td>
<td>3123</td>
<td>-871</td>
<td>35.7</td>
<td>-45.4</td>
<td>0.498</td>
<td>0.454</td>
<td>0</td>
<td>0.559</td>
<td>76</td>
<td>420</td>
<td>250</td>
<td>2039</td>
<td></td>
</tr>
<tr>
<td>Constant-g Avg</td>
<td>17.3</td>
<td>12.5</td>
<td>3436</td>
<td>-981</td>
<td>22.5</td>
<td>-72.3</td>
<td>0.671</td>
<td>0.465</td>
<td>0</td>
<td>0.575</td>
<td>54</td>
<td>504</td>
<td>294</td>
<td>4372</td>
<td></td>
</tr>
<tr>
<td>Late High-g Avg</td>
<td>14.8</td>
<td>11.6</td>
<td>2969</td>
<td>-483</td>
<td>19.2</td>
<td>-27.3</td>
<td>0.22</td>
<td>0.249</td>
<td>0</td>
<td>0.48</td>
<td>54</td>
<td>344</td>
<td>211</td>
<td>419</td>
<td></td>
</tr>
</tbody>
</table>

Average Values w/o HANS

<table>
<thead>
<tr>
<th>Test</th>
<th>V (m/s)</th>
<th>Average Acceleration (g's)</th>
<th>ΔV (m/s)</th>
<th>Tension Neck Load (N)</th>
<th>Compression Neck Load (N)</th>
<th>Flexion Neck Moment (N-m)</th>
<th>Extension Neck Moment (N-m)</th>
<th>N_e</th>
<th>N_c</th>
<th>N_f</th>
<th>N_e</th>
<th>Peak Resultant Head Accel (g's)</th>
<th>HIC_e</th>
<th>HIC_c</th>
<th>Axial Femur Load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early High-g Hans Avg</td>
<td>16.7</td>
<td>11.6</td>
<td>1869</td>
<td>-491</td>
<td>67.8</td>
<td>-48.7</td>
<td>0.469</td>
<td>0.403</td>
<td>0.059</td>
<td>0.469</td>
<td>71</td>
<td>453</td>
<td>285</td>
<td>3193</td>
<td></td>
</tr>
<tr>
<td>Constant-g Hans Avg</td>
<td>17.9</td>
<td>12.5</td>
<td>1718</td>
<td>-1027</td>
<td>43.2</td>
<td>-61.4</td>
<td>0.652</td>
<td>0.322</td>
<td>0.076</td>
<td>0.324</td>
<td>63</td>
<td>505</td>
<td>342</td>
<td>4098</td>
<td></td>
</tr>
<tr>
<td>Late High-g Hans Avg</td>
<td>16.1</td>
<td>12.5</td>
<td>1480</td>
<td>-513</td>
<td>44.9</td>
<td>-53.9</td>
<td>0.41</td>
<td>0.405</td>
<td>0.094</td>
<td>0.307</td>
<td>67</td>
<td>444</td>
<td>363</td>
<td>2940</td>
<td></td>
</tr>
</tbody>
</table>

Average Values w/ HANS

<table>
<thead>
<tr>
<th>Test</th>
<th>V (m/s)</th>
<th>Average Acceleration (g's)</th>
<th>ΔV (m/s)</th>
<th>Tension Neck Load (N)</th>
<th>Compression Neck Load (N)</th>
<th>Flexion Neck Moment (N-m)</th>
<th>Extension Neck Moment (N-m)</th>
<th>N_e</th>
<th>N_c</th>
<th>N_f</th>
<th>N_e</th>
<th>Peak Resultant Head Accel (g's)</th>
<th>HIC_e</th>
<th>HIC_c</th>
<th>Axial Femur Load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early High-g Hans Avg</td>
<td>16.7</td>
<td>11.6</td>
<td>1869</td>
<td>-491</td>
<td>67.8</td>
<td>-48.7</td>
<td>0.469</td>
<td>0.403</td>
<td>0.059</td>
<td>0.469</td>
<td>71</td>
<td>453</td>
<td>285</td>
<td>3193</td>
<td></td>
</tr>
<tr>
<td>Constant-g Hans Avg</td>
<td>17.9</td>
<td>12.5</td>
<td>1718</td>
<td>-1027</td>
<td>43.2</td>
<td>-61.4</td>
<td>0.652</td>
<td>0.322</td>
<td>0.076</td>
<td>0.324</td>
<td>63</td>
<td>505</td>
<td>342</td>
<td>4098</td>
<td></td>
</tr>
<tr>
<td>Late High-g Hans Avg</td>
<td>16.1</td>
<td>12.5</td>
<td>1480</td>
<td>-513</td>
<td>44.9</td>
<td>-53.9</td>
<td>0.41</td>
<td>0.405</td>
<td>0.094</td>
<td>0.307</td>
<td>67</td>
<td>444</td>
<td>363</td>
<td>2940</td>
<td></td>
</tr>
</tbody>
</table>

Comparison with and w/o HANS

<table>
<thead>
<tr>
<th>Test</th>
<th>2.8%</th>
<th>0%</th>
<th>-40%</th>
<th>-44%</th>
<th>90%</th>
<th>7%</th>
<th>-6%</th>
<th>-11%</th>
<th>-16%</th>
<th>-6%</th>
<th>8%</th>
<th>14%</th>
<th>57%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early High-g</td>
<td>3.5%</td>
<td>0%</td>
<td>-50%</td>
<td>5%</td>
<td>92%</td>
<td>-15%</td>
<td>-3%</td>
<td>-31%</td>
<td>-44%</td>
<td>17%</td>
<td>0%</td>
<td>17%</td>
<td>-6%</td>
</tr>
<tr>
<td>Late High-g</td>
<td>9.2%</td>
<td>8%</td>
<td>-50%</td>
<td>6%</td>
<td>134%</td>
<td>98%</td>
<td>86%</td>
<td>63%</td>
<td>-36%</td>
<td>22%</td>
<td>29%</td>
<td>72%</td>
<td>602%</td>
</tr>
</tbody>
</table>
Results – Critical Speed

- During the critical late high-g test the tension neck load, HIC$_{15}$, HIC$_{36}$, and femur load IARV were exceeded.
- The use of the HANS device reduced the tension neck load below the IARV.
- The use of the HANS did not affect the HIC$_{15}$, HIC$_{36}$, and femur load values.

<table>
<thead>
<tr>
<th>Test</th>
<th>Axial Femur Load (N)</th>
<th>Peak Resultant Head Accel (g's)</th>
<th>Axial Femur Load (N)</th>
<th>Peak Resultant Head Accel (g's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Late High-g</td>
<td>4817</td>
<td>1549</td>
<td>2305</td>
<td>1412</td>
</tr>
<tr>
<td>Critical Late High-g HANS</td>
<td>-1421</td>
<td>-1150</td>
<td>-58.69</td>
<td>-58.69</td>
</tr>
<tr>
<td></td>
<td>57.92</td>
<td>0.589</td>
<td>0.702</td>
<td>0.702</td>
</tr>
<tr>
<td></td>
<td>-1421</td>
<td>0.491</td>
<td>0.351</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>-45.42</td>
<td>0.418</td>
<td>0.103</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>101</td>
<td>13550</td>
<td>13550</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>14.0</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>14.0</td>
<td>13490</td>
<td>13490</td>
</tr>
</tbody>
</table>
Results – Critical Speed Kite Graph (no HANS)

Test Conditions
• 15.6 m/s
• 20 g avg
• 80 ms
Results – Critical Speed Kite Graph (w/ HANS)

Test Conditions
- 15.6 m/s
- 20 g avg
- 80 ms
Conclusions

- The baseline tests that approximated the Formula SAE rules (7.0 m/s, 20-g average deceleration) resulted in measured injury values that were negligible compared to the IARV.
- The tests comparing pulse shape all resulted in values which were less than the IARV.
- The statistically highest values comparing pulse shape were seen during the constant-g test however, the average acceleration was slightly higher for these tests.
Conclusions Cont.

- The addition of a HANS device reduced the tension neck load in every test and brought the test value below the IARV for the critical speed test.
- An impact from 15.6 m/s with a 20-g average deceleration rate was found to pose a serious risk of injury to the driver, with and without the HANS device.

To reduce the risk of injury to the driver, horizontally mounted tubes should be placed a...
Acknowledgements

- Janet Brelin-Fornari, John Young and the Kettering University Crash Safety Center for the use of their facility.
- Denton Safety Systems for the use of their equipment
- Jamie Jones and Red Horse Racing for the donation of a HANS device for testing.
- Lynn St. James and HANS for the donation of two new HANS devices.
References

Thank You For Your Time

Any Questions?