(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 18400, 549]*) (*NotebookOutlinePosition[ 19054, 572]*) (* CellTagsIndexPosition[ 19010, 568]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Bill Gosper 's Continued Fraction Fiesta", "Subtitle", FormatType->TextForm], Cell[CellGroupData[{ Cell["inits", "Subsection", FormatType->TextForm], Cell[TextData[StyleBox["where ContinuedFractionK[num[n],den[n],{n,0,inf}] := \ num[0]+den[0]/(num[1]+den[1]/... (in Gosper's mail)\nrather \ ContinuedFractionK[num[n],den[n],{n,0,inf}] := \ num[0]/(den[0]+num[1]/(den[1]+... (as it should be)", FormatType->TextForm, FontFamily->"Courier New", FontSize->10]], "Text"], Cell[CellGroupData[{ Cell["\<\ Fold[Function[n,d n+e] [#2]/(Function[n,a n+b] [#2]+#1) \ &,Infinity,Reverse@Table[k,{k,0,7}]]\ \>", "Input"], Cell[BoxData[ \(e\/\(b + \(d + e\)\/\(a + b + \(2\ d + e\)\/\(2\ a + b + \(3\ d + e\)\/\ \(3\ a + b + \(4\ d + e\)\/\(4\ a + b + \(5\ d + e\)\/\(5\ a + b + \(6\ d + e\ \)\/\(6\ a + b\)\)\)\)\)\)\)\)], "Output"] }, Open ]], Cell[BoxData[ \(\(bigUpper = 69;\)\)], "Input", Background->RGBColor[1, 1, 0]], Cell[CellGroupData[{ Cell["\<\ ContinuedFractionK[num_, den_, {dum_, low_, hi_}]:= Block[{te,high}, If[Not[And[NumericQ[Function[dum,num][1]],NumericQ[Function[dum,den][1]]]],\ high=7,high=hi]; te=Fold[Function[dum,num][#2]/(Function[dum,den][#2]+#1)&,Infinity,Reverse@\ Table[k,{k,low,Min[high,bigUpper]}]]; If[high>=bigUpper,te~N~48,te]]\ \>", "Input", Background->RGBColor[1, 1, 0]], Cell[BoxData[ \(General::"spell1" \(\(:\)\(\ \)\) "Possible spelling error: new symbol name \"\!\(ContinuedFractionK\)\" \ is similar to existing symbol \"\!\(ContinuedFraction\)\"."\)], "Message"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ ContinuedFractionK[1/2 n + 1 , 1 n + 1 ,{n,0,\[Infinity]}] ~N~48\ \>", "Input"], Cell[BoxData[ \(0.6308430492414617297908652382622427824095124843400235120482033643317`\ 48\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["ContinuedFractionK[d n + e, a n + b, {n, 0, Infinity}]", "Input"], Cell[BoxData[ \(e\/\(b + \(d + e\)\/\(a + b + \(2\ d + e\)\/\(2\ a + b + \(3\ d + e\)\/\ \(3\ a + b + \(4\ d + e\)\/\(4\ a + b + \(5\ d + e\)\/\(5\ a + b + \(6\ d + e\ \)\/\(6\ a + b\)\)\)\)\)\)\)\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["linear-linear", "Subsection", FormatType->TextForm], Cell[CellGroupData[{ Cell["\<\ {ContinuedFractionK[d n + e , a n + b, {n, 0, Infinity}], e Hypergeometric1F1Regularized[(d+e)/d,(a(a+b)+d)/a^2,d/a^2]/a / Hypergeometric1F1Regularized[e/d,(a b+d)/a^2,d/a^2]//Simplify}\ \>", "Input", Background->GrayLevel[0.900008]], Cell["\<\ Syntax::bktwrn: \"a(a+b)\" represents multiplication; use \"a[a+b]\" to \ represent a function.\ \>", "Message"], Cell[BoxData[ \({e\/\(b + \(d + e\)\/\(a + b + \(2\ d + e\)\/\(2\ a + b + \(3\ d + \ e\)\/\(3\ a + b + \(4\ d + e\)\/\(4\ a + b + \(5\ d + e\)\/\(5\ a + b + \(6\ \ d + e\)\/\(6\ a + b\)\)\)\)\)\)\), \(e\ Hypergeometric1F1Regularized[\(d + \ e\)\/d, \(a\ \((a + b)\) + d\)\/a\^2, d\/a\^2]\)\/\(a\ \ Hypergeometric1F1Regularized[e\/d, \(a\ b + d\)\/a\^2, d\/a\^2]\)}\)], \ "Output"] }, Open ]], Cell[BoxData[ \(\(ru = Thread[{d, e, a, b} \[Rule] {1/2, 1, 1, 1}];\)\)], "Input"], Cell[CellGroupData[{ Cell["\<\ {ContinuedFractionK[d n + e /.ru, a n + b /.ru, {n, 0, Infinity}], e Hypergeometric1F1Regularized[(d+e)/d,(a(a+b)+d)/a^2,d/a^2]/a / Hypergeometric1F1Regularized[e/d,(a b+d)/a^2,d/a^2]/. ru ~N~48}\ \>", "Input", Background->GrayLevel[0.900008]], Cell["\<\ Syntax::bktwrn: \"a(a+b)\" represents multiplication; use \"a[a+b]\" to \ represent a function.\ \>", "Message"], Cell[BoxData[ \({0.6308430492414617297908652382622427824095124843400235120482033643317`\ 48, 0.63084304924146172979086523826224278240951248434003067309049792`45.8138}\ \)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["specialise: no constant - slope_1", "Subsubsection", FormatType->TextForm], Cell[CellGroupData[{ Cell["\<\ {(E^y*Gamma[1 + z, 0, y])/y^z, -1 + z/(-y + z + ContinuedFractionK[n*y, n - y + z, {n, 1, Infinity}])}\ \>", "Input", Background->GrayLevel[0.900008]], Cell[BoxData[ \({\[ExponentialE]\^y\ y\^\(-z\)\ Gamma[1 + z, 0, y], \(-1\) + z\/\(\(-y\) + z + y\/\(1 - y + z + \(2\ y\)\/\(2 - y + z + \(3\ y\)\/\ \(3 - y + z + \(4\ y\)\/\(4 - y + z + \(5\ y\)\/\(5 - y + z + \(6\ y\)\/\(6 - \ y + z\)\)\)\)\)\)\)}\)], "Output"] }, Open ]], Cell[BoxData[ \(\(ru = {y \[Rule] 3, z \[Rule] 1};\)\)], "Input"], Cell[CellGroupData[{ Cell["\<\ {(E^y*Gamma[1 + z, 0, y])/y^z /. ru ~N~48, -1 + z/(-y + z + ContinuedFractionK[n*y /.ru, n - y + z /.ru, {n, 1, \ \[Infinity]}])/.ru}\ \>", "Input"], Cell[BoxData[ \({5.36184564106255591364284321819390596566263594618471671477577503`47.\ 1286, 5.36184564106255591364284321819390596566263594618471671481155554`46.\ 7883}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["specialise 2: constant - linear", "Subsubsection", FormatType->TextForm], Cell[BoxData[ \(\(ru = Thread[{d, e, a, b} \[Rule] {0, 1, 1, 1}];\)\)], "Input"], Cell[CellGroupData[{ Cell[TextData[{ "{ContinuedFractionK[d n + e /.ru, a n + b /.ru, {n, ", StyleBox["1", FontColor->RGBColor[1, 0, 0]], ", Infinity}],\ne Hypergeometric0F1[2+b/a,e/a^2]/(a+b) /\n\ Hypergeometric0F1[1+b/a,e/a^2]/. ru ~N~48}" }], "Input", Background->GrayLevel[0.900008]], Cell[BoxData[ \({0.4331274267223117583171834557759918204315127679059805234344290910399`\ 48, 0.43312742672231175831718345577599182043151276790598056329823895`47.0969}\ \)], "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["quadratic-linear", "Subsection", FormatType->TextForm], Cell[CellGroupData[{ Cell["\<\ {ContinuedFractionK[c*n^2 + d*n + e, a*n + b, {n, 0, \[Infinity]}] , (2*c*e*Hypergeometric2F1[1 + (2*e)/(d + Sqrt[d^2 - 4*c*e]), 1 + (d + \ Sqrt[d^2 - 4*c*e])/(2*c), 1/2*(3 + d/c + (2*b*c - a*(c + d))/(c*Sqrt[a^2 + 4*c])), 1/2 - \ a/(2*Sqrt[a^2 + 4*c])])/ ((2*b*c - a*(c + d) + Sqrt[a^2 + 4*c]*(c + d))*Hypergeometric2F1[(2*e)/(d \ + Sqrt[d^2 - 4*c*e]), (d + Sqrt[d^2 - 4*c*e])/(2*c), 1/2*(1 + d/c + (2*b*c - a*(c + \ d))/(c*Sqrt[a^2 + 4*c])), 1/2 - a/(2*Sqrt[a^2 + 4*c])])}\ \>", "Input"], Cell[BoxData[ \({e\/\(b + \(c + d + e\)\/\(a + b + \(4\ c + 2\ d + e\)\/\(2\ a + b + \ \(9\ c + 3\ d + e\)\/\(3\ a + b + \(16\ c + 4\ d + e\)\/\(4\ a + b + \(25\ c \ + 5\ d + e\)\/\(5\ a + b + \(36\ c + 6\ d + e\)\/\(6\ a + b\)\)\)\)\)\)\), \ \(2\ c\ e\ Hypergeometric2F1[1 + \(2\ e\)\/\(d + \@\(d\^2 - 4\ c\ e\)\), 1 + \ \(d + \@\(d\^2 - 4\ c\ e\)\)\/\(2\ c\), 1\/2\ \((3 + d\/c + \(2\ b\ c - a\ \ \((c + d)\)\)\/\(c\ \@\(a\^2 + 4\ c\)\))\), 1\/2 - a\/\(2\ \@\(a\^2 + 4\ \ c\)\)]\)\/\(\((2\ b\ c - a\ \((c + d)\) + \@\(a\^2 + 4\ c\)\ \((c + d)\))\)\ \ Hypergeometric2F1[\(2\ e\)\/\(d + \@\(d\^2 - 4\ c\ e\)\), \(d + \@\(d\^2 - 4\ \ c\ e\)\)\/\(2\ c\), 1\/2\ \((1 + d\/c + \(2\ b\ c - a\ \((c + d)\)\)\/\(c\ \@\ \(a\^2 + 4\ c\)\))\), 1\/2 - a\/\(2\ \@\(a\^2 + 4\ c\)\)]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["ru=Thread[{a,b,c,d,e}->{2,3,4,1,2}]", "Input"], Cell[BoxData[ \({a \[Rule] 2, b \[Rule] 3, c \[Rule] 4, d \[Rule] 1, e \[Rule] 2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ {ContinuedFractionK[c*n^2 + d*n + e /.ru, a*n + b /.ru, {n, 0, \[Infinity]}] \ , (2*c*e*Hypergeometric2F1[1 + (2*e)/(d + Sqrt[d^2 - 4*c*e]), 1 + (d + \ Sqrt[d^2 - 4*c*e])/(2*c), 1/2*(3 + d/c + (2*b*c - a*(c + d))/(c*Sqrt[a^2 + 4*c])), 1/2 - \ a/(2*Sqrt[a^2 + 4*c])])/ ((2*b*c - a*(c + d) + Sqrt[a^2 + 4*c]*(c + d))*Hypergeometric2F1[(2*e)/(d \ + Sqrt[d^2 - 4*c*e]), (d + Sqrt[d^2 - 4*c*e])/(2*c), 1/2*(1 + d/c + (2*b*c - a*(c + \ d))/(c*Sqrt[a^2 + 4*c])), 1/2 - a/(2*Sqrt[a^2 + 4*c])])/.ru ~N~48 //Chop}\ \>", "Input"], Cell[BoxData[ \({0.4996708582077396197352958090928215117674639628177092978318116600555`\ 48, 0.49967085820773961973529580909241104412171045277509228753564848`46.8201}\ \)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ specialise K[ z + 2*n*z + n^2*z , 3 + 2*n , {n, 0, \[Infinity]}]\ \ \>", "Subsubsection", FormatType->TextForm], Cell[CellGroupData[{ Cell["\<\ (2*c*e*Hypergeometric2F1[1 + (2*e)/(d + Sqrt[d^2 - 4*c*e]), 1 + (d + Sqrt[d^2 \ - 4*c*e])/(2*c), (1*(3 + d/c + (2*b*c - a*(c + d))/(c*Sqrt[a^2 + 4*c])))/2, 1/2 - \ a/(2*Sqrt[a^2 + 4*c])])/ ((2*b*c - a*(c + d) + Sqrt[a^2 + 4*c]*(c + d))*Hypergeometric2F1[(2*e)/(d \ + Sqrt[d^2 - 4*c*e]), (d + Sqrt[d^2 - 4*c*e])/(2*c), (1*(1 + d/c + (2*b*c - a*(c + \ d))/(c*Sqrt[a^2 + 4*c])))/2, 1/2 - a/(2*Sqrt[a^2 + 4*c])]) /. {a -> 2, b -> 3, c -> z, d -> 2*z, e -> \ z}\ \>", "Input"], Cell[BoxData[ \(\(2\ z\ \@\(1\/2 - 1\/\@\(4 + 4\ z\)\)\ \@\(1\/2 + 1\/\@\(4 + 4\ z\)\)\ \ Hypergeometric2F1[2, 2, 5\/2, 1\/2 - 1\/\@\(4 + 4\ z\)]\)\/\(3\ \@\(4 + 4\ \ z\)\ ArcSin[\@\(1\/2 - 1\/\@\(4 + 4\ z\)\)]\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["FullSimplify[%]", "Input"], Cell[BoxData[ \(\(\((z\/\(1 + z\))\)\^\(3/2\)\ \@\(1 + z\)\ Hypergeometric2F1[2, 2, \ 5\/2, 1\/2 - 1\/\(2\ \@\(1 + z\)\)]\)\/\(6\ ArcSin[\@\(1\/2 - 1\/\(2\ \@\(1 + \ z\)\)\)]\)\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "specialise K[ 1/4*-", StyleBox["a", FontColor->RGBColor[1, 0, 0]], "^2*n^2 + d*n + e, ", StyleBox["a", FontColor->RGBColor[1, 0, 0]], "*n + b, {n, 0, \[Infinity]}]" }], "Subsubsection"], Cell[CellGroupData[{ Cell[TextData[{ "{ContinuedFractionK[1/4*-", StyleBox["a", FontColor->RGBColor[1, 0, 0]], "^2*n^2 + d*n + e,", StyleBox["a", FontColor->RGBColor[1, 0, 0]], "*n + b, ", " {n, 0, Infinity}], \n (2*a*e*HypergeometricPFQ[{1 - (2*d)/a^2 - \ (2*Sqrt[d^2 + a^2*e])/a^2, \n 1 - (2*d)/a^2 + (2*Sqrt[d^2 + \ a^2*e])/a^2}, {}, -(a^2/(-a^2 + 2*a*b + 4*d))])/\n ((-a^2 + 2*a*b + \ 4*d)*HypergeometricPFQ[{-((2*d)/a^2) - (2*Sqrt[d^2 + a^2*e])/a^2, \n \ -((2*d)/a^2) + (2*Sqrt[d^2 + a^2*e])/a^2}, {}, -(a^2/(-a^2 + 2*a*b + \ 4*d))])}" }], "Input", Background->GrayLevel[0.900008]], Cell[BoxData[ \({e\/\(b + \(\(-\(a\^2\/4\)\) + d + e\)\/\(a + b + \(\(-a\^2\) + 2\ d + \ e\)\/\(2\ a + b + \(\(-\(\(9\ a\^2\)\/4\)\) + 3\ d + e\)\/\(3\ a + b + \(\(-4\ \)\ a\^2 + 4\ d + e\)\/\(4\ a + b + \(\(-\(\(25\ a\^2\)\/4\)\) + 5\ d + e\)\/\ \(5\ a + b + \(\(-9\)\ a\^2 + 6\ d + e\)\/\(6\ a + b\)\)\)\)\)\)\), \(2\ e\ \ HypergeometricU[1 - \(2\ d\)\/a\^2 - \(2\ \@\(d\^2 + a\^2\ e\)\)\/a\^2, 1 - \ \(4\ \@\(d\^2 + a\^2\ e\)\)\/a\^2, \(\(-a\^2\) + 2\ a\ b + 4\ \ d\)\/a\^2]\)\/\(a\ HypergeometricU[\(-\(\(2\ d\)\/a\^2\)\) - \(2\ \@\(d\^2 + \ a\^2\ e\)\)\/a\^2, 1 - \(4\ \@\(d\^2 + a\^2\ e\)\)\/a\^2, \(\(-a\^2\) + 2\ a\ \ b + 4\ d\)\/a\^2]\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["ru=Thread[{a,b,d,e}->{1/2,1,2,3}]", "Input"], Cell[BoxData[ \({a \[Rule] 1\/2, b \[Rule] 1, d \[Rule] 2, e \[Rule] 3}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ {ContinuedFractionK[1/4*-a^2*n^2 + d*n + e /.ru, a*n + b /.ru, {n, 0, \ Infinity}], (2*a*e*HypergeometricPFQ[{1 - (2*d)/a^2 - (2*Sqrt[d^2 + a^2*e])/a^2, 1 - (2*d)/a^2 + (2*Sqrt[d^2 + a^2*e])/a^2}, {}, -(a^2/(-a^2 + 2*a*b + \ 4*d))])/ ((-a^2 + 2*a*b + 4*d)*HypergeometricPFQ[{-((2*d)/a^2) - (2*Sqrt[d^2 + \ a^2*e])/a^2, -((2*d)/a^2) + (2*Sqrt[d^2 + a^2*e])/a^2}, {}, -(a^2/(-a^2 + 2*a*b + \ 4*d))]) /.ru } %//FullSimplify %~N~48\ \>", "Input", Background->None], Cell[BoxData[ \({1.18828166187892602790019045075737419785633453233066195762834362`48, \ \(12\ HypergeometricU[\(-15\) - 4\ \@19, 1 - 8\ \@19, 35]\)\/HypergeometricU[\ \(-16\) - 4\ \@19, 1 - 8\ \@19, 35]}\)], "Output"], Cell[BoxData[ \({1.18828166187892602790019045075737419785633453233066195762834362`48, \ \(12\ HypergeometricU[\(-15\) - 4\ \@19, 1 - 8\ \@19, 35]\)\/HypergeometricU[\ \(-4\)\ \((4 + \@19)\), 1 - 8\ \@19, 35]}\)], "Output"], Cell[BoxData[ \({1.18828166187892602790019045075737419785633453233066195762834362`48, 1.18828166187892602790019045075737419785633453233066195747126476`48}\)],\ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "{ContinuedFractionK[1/4*-a^2*n^2 + d*n + e /.ru,a*n + b /.ru, {n, 0, \ Infinity}], \n (2*a*e* ", StyleBox["ypergeometricPFQ", FontColor->RGBColor[0, 0, 1]], "[{1 - (2*d)/a^2 - (2*Sqrt[d^2 + a^2*e])/a^2, \n 1 - (2*d)/a^2 + \ (2*Sqrt[d^2 + a^2*e])/a^2}, {}, -(a^2/(-a^2 + 2*a*b + 4*d))])/\n ((-a^2 + \ 2*a*b + 4*d)* ", StyleBox["ypergeometricPFQ", FontColor->RGBColor[0, 0, 1]], "[{-((2*d)/a^2) - (2*Sqrt[d^2 + a^2*e])/a^2, \n -((2*d)/a^2) + \ (2*Sqrt[d^2 + a^2*e])/a^2}, {}, -(a^2/(-a^2 + 2*a*b + 4*d))])/. gospersRule \ /.ru }\n%//FullSimplify\n %~N~48" }], "Input", Background->None], Cell[BoxData[ \({1.32599373379934479107782121155934412995963727646709996103387449`48, \ \(36\ \((\(\((35\/9)\)\^\(\(-\(7\/9\)\) - \(4\ \@43\)\/9\)\ Gamma[\(8\ \@43\)\ \/9]\ HypergeometricPFQ[{\(-\(7\/9\)\) - \(4\ \@43\)\/9}, {1 - \(8\ \ \@43\)\/9}, 35\/9]\)\/Gamma[\(-\(7\/9\)\) + \(4\ \@43\)\/9] + \(\((9\/35)\)\^\ \(7\/9 - \(4\ \@43\)\/9\)\ Gamma[\(-\(\(8\ \@43\)\/9\)\)]\ \ HypergeometricPFQ[{\(-\(7\/9\)\) + \(4\ \@43\)\/9}, {1 + \(8\ \@43\)\/9}, \ 35\/9]\)\/Gamma[\(-\(7\/9\)\) - \(4\ \@43\)\/9])\)\)\/\(35\ \ \((\(\((35\/9)\)\^\(\(-\(16\/9\)\) - \(4\ \@43\)\/9\)\ Gamma[\(8\ \@43\)\/9]\ \ HypergeometricPFQ[{\(-\(16\/9\)\) - \(4\ \@43\)\/9}, {1 - \(8\ \@43\)\/9}, 35\ \/9]\)\/Gamma[\(-\(16\/9\)\) + \(4\ \@43\)\/9] + \(\((9\/35)\)\^\(16\/9 - \(4\ \ \@43\)\/9\)\ Gamma[\(-\(\(8\ \@43\)\/9\)\)]\ \ HypergeometricPFQ[{\(-\(16\/9\)\) + \(4\ \@43\)\/9}, {1 + \(8\ \@43\)\/9}, 35\ \/9]\)\/Gamma[\(-\(16\/9\)\) - \(4\ \@43\)\/9])\)\)}\)], "Output"], Cell[BoxData[ \({1.32599373379934479107782121155934412995963727646709996103387449`48, \ \((4\ Gamma[ 4\/9\ \((\(-4\) + \@43)\)]\ Gamma[\(-\(4\/9\)\)\ \((4 + \ \@43)\)]\ \((3\^\(\(16\ \@43\)\/9\)\ Gamma[\(8\ \@43\)\/9]\ Gamma[ 1\/9\ \((\(-7\) - 4\ \@43)\)]\ Hypergeometric1F1[ 1\/9\ \((\(-7\) - 4\ \@43)\), 1 - \(8\ \@43\)\/9, 35\/9] + 35\^\(\(8\ \@43\)\/9\)\ Gamma[\(-\(\(8\ \@43\)\/9\)\)]\ Gamma[ 1\/9\ \((\(-7\) + 4\ \@43)\)]\ Hypergeometric1F1[ 1\/9\ \((\(-7\) + 4\ \@43)\), 1 + \(8\ \@43\)\/9, 35\/9])\))\)/\((Gamma[ 1\/9\ \((\(-7\) - 4\ \@43)\)]\ Gamma[ 1\/9\ \((\(-7\) + 4\ \@43)\)]\ \((35\^\(\(8\ \@43\)\/9\)\ Gamma[\(-\(\(8\ \ \@43\)\/9\)\)]\ Gamma[4\/9\ \((\(-4\) + \@43)\)]\ Hypergeometric1F1[ 4\/9\ \((\(-4\) + \@43)\), 1 + \(8\ \@43\)\/9, 35\/9] + 3\^\(\(16\ \@43\)\/9\)\ Gamma[\(8\ \@43\)\/9]\ \ Gamma[\(-\(4\/9\)\)\ \((4 + \@43)\)]\ Hypergeometric1F1[\(-\(4\/9\)\)\ \((4 + \ \@43)\), 1 - \(8\ \@43\)\/9, 35\/9])\))\)}\)], "Output"], Cell[BoxData[ \({1.32599373379934479107782121155934412995963727646709996103387449`48, 1.32599373379934479107782121176450331018758562577579308658973254`48}\)],\ "Output"] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "gospersRule= ", StyleBox["ypergeometricPFQ", FontColor->RGBColor[0, 0, 1]], "[{a_, b_}, {Sequence[]}, z_] -> \n (Gamma[a - b]*HypergeometricPFQ[{b}, \ {b - a + 1}, -z^(-1)]*(-z^(-1))^b)/Gamma[a] + \n (HypergeometricPFQ[{a}, \ {-b + a + 1}, -z^(-1)]*Gamma[b - a]*(-z^(-1))^a)/Gamma[b]" }], "Input"], Cell[BoxData[ \(ypergeometricPFQ[{a_, b_}, {}, z_] \[Rule] \(\((\(-\(1\/z\)\))\)\^a\ Gamma[\(-a\) + b]\ \ HypergeometricPFQ[{a}, {1 + a - b}, \(-\(1\/z\)\)]\)\/Gamma[b] + \ \(\((\(-\(1\/z\)\))\)\^b\ Gamma[a - b]\ HypergeometricPFQ[{b}, {1 - a + b}, \ \(-\(1\/z\)\)]\)\/Gamma[a]\)], "Output"] }, Closed]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["linear-quadratic (??? still open)", "Subsection"], Cell[CellGroupData[{ Cell["\<\ ContinuedFractionK[a*n + b, c*n^2 + d*n + e, {n, 0, \[Infinity]}] \ \>", "Input"], Cell[BoxData[ \(b\/\(e + \(a + b\)\/\(c + d + e + \(2\ a + b\)\/\(4\ c + 2\ d + e + \(3\ \ a + b\)\/\(9\ c + 3\ d + e + \(4\ a + b\)\/\(16\ c + 4\ d + e + \(5\ a + \ b\)\/\(25\ c + 5\ d + e + \(6\ a + b\)\/\(36\ c + 6\ d + e\)\)\)\)\)\)\)\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell["ru=Thread[{a,b,c,d,e}->{2,3,4,1,2}]", "Input"], Cell[BoxData[ \({a \[Rule] 2, b \[Rule] 3, c \[Rule] 4, d \[Rule] 1, e \[Rule] 2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ ContinuedFractionK[a*n + b /. ru, c*n^2 + d*n + e /. ru, {n, 0, \ \[Infinity]}] \ \>", "Input"], Cell[BoxData[ \(1.1191429737507514962188776959505560974176588064459667187211869`48\)], \ "Output"] }, Open ]] }, Open ]] }, Open ]] }, FrontEndVersion->"4.0 for Microsoft Windows", ScreenRectangle->{{0, 1680}, {0, 977}}, WindowSize->{1432, 798}, WindowMargins->{{0, Automatic}, {Automatic, 0}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1739, 51, 84, 1, 64, "Subtitle"], Cell[CellGroupData[{ Cell[1848, 56, 51, 1, 47, "Subsection"], Cell[1902, 59, 323, 6, 46, "Text"], Cell[CellGroupData[{ Cell[2250, 69, 119, 3, 30, "Input"], Cell[2372, 74, 214, 3, 70, "Output"] }, Open ]], Cell[2601, 80, 84, 2, 46, "Input"], Cell[CellGroupData[{ Cell[2710, 86, 366, 8, 100, "Input"], Cell[3079, 96, 208, 3, 70, "Message"] }, Open ]], Cell[CellGroupData[{ Cell[3324, 104, 89, 2, 30, "Input"], Cell[3416, 108, 108, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3561, 115, 71, 0, 30, "Input"], Cell[3635, 117, 214, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[3898, 126, 59, 1, 31, "Subsection"], Cell[CellGroupData[{ Cell[3982, 131, 245, 5, 82, "Input"], Cell[4230, 138, 122, 3, 70, "Message"], Cell[4355, 143, 384, 6, 70, "Output"] }, Open ]], Cell[4754, 152, 86, 1, 30, "Input"], Cell[CellGroupData[{ Cell[4865, 157, 255, 5, 82, "Input"], Cell[5123, 164, 122, 3, 70, "Message"], Cell[5248, 169, 186, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5471, 177, 83, 1, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[5579, 182, 165, 4, 64, "Input"], Cell[5747, 188, 275, 4, 70, "Output"] }, Open ]], Cell[6037, 195, 69, 1, 30, "Input"], Cell[CellGroupData[{ Cell[6131, 200, 161, 4, 48, "Input"], Cell[6295, 206, 186, 3, 70, "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[6530, 215, 84, 1, 29, "Subsubsection"], Cell[6617, 218, 84, 1, 30, "Input"], Cell[CellGroupData[{ Cell[6726, 223, 278, 7, 82, "Input"], Cell[7007, 232, 186, 3, 70, "Output"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[7254, 242, 62, 1, 31, "Subsection"], Cell[CellGroupData[{ Cell[7341, 247, 523, 11, 120, "Input"], Cell[7867, 260, 790, 10, 124, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8694, 275, 52, 0, 30, "Input"], Cell[8749, 277, 106, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8892, 284, 553, 12, 120, "Input"], Cell[9448, 298, 186, 3, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9671, 306, 136, 4, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[9832, 314, 502, 11, 102, "Input"], Cell[10337, 327, 230, 3, 93, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10604, 335, 32, 0, 30, "Input"], Cell[10639, 337, 194, 3, 85, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[10882, 346, 222, 8, 43, "Subsubsection"], Cell[CellGroupData[{ Cell[11129, 358, 600, 15, 118, "Input"], Cell[11732, 375, 664, 9, 158, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12433, 389, 50, 0, 30, "Input"], Cell[12486, 391, 89, 1, 42, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12612, 397, 495, 13, 138, "Input"], Cell[13110, 412, 221, 3, 57, "Output"], Cell[13334, 417, 226, 3, 57, "Output"], Cell[13563, 422, 181, 3, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13781, 430, 638, 14, 138, "Input"], Cell[14422, 446, 951, 13, 151, "Output"], Cell[15376, 461, 1188, 19, 261, "Output"], Cell[16567, 482, 181, 3, 29, "Output"] }, Closed]], Cell[CellGroupData[{ Cell[16785, 490, 328, 7, 63, "Input"], Cell[17116, 499, 304, 5, 53, "Output"] }, Closed]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17481, 511, 55, 0, 31, "Subsection"], Cell[CellGroupData[{ Cell[17561, 515, 92, 2, 30, "Input"], Cell[17656, 519, 258, 4, 99, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17951, 528, 52, 0, 30, "Input"], Cell[18006, 530, 106, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18149, 537, 106, 3, 30, "Input"], Cell[18258, 542, 102, 2, 29, "Output"] }, Open ]] }, Open ]] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)