
NHibernate Reference Documentation

Version: 1.0.2

Table of Contents
Preface .. vi
1. Quickstart with IIS and Microsoft SQL Server ... 1

1.1. Getting started with NHibernate .. 1
1.2. First persistent class ... 2
1.3. Mapping the cat ... 3
1.4. Playing with cats .. 4
1.5. Finally ... 6

2. Architecture .. 7
2.1. Overview ... 7

3. ISessionFactory Configuration .. 10
3.1. Programmatic Configuration ... 10
3.2. Obtaining an ISessionFactory .. 11
3.3. User provided ADO.NET connection .. 11
3.4. NHibernate provided ADO.NET connection .. 11
3.5. Optional configuration properties .. 13

3.5.1. SQL Dialects ... 14
3.5.2. Outer Join Fetching ... 15
3.5.3. Custom ICacheProvider ... 15
3.5.4. Query Language Substitution ... 16

3.6. Logging ... 16
3.7. Implementing an INamingStrategy .. 16
3.8. XML Configuration File ... 16

4. Persistent Classes .. 18
4.1. A simple POCO example .. 18

4.1.1. Declare accessors and mutators for persistent fields ... 19
4.1.2. Implement a default constructor ... 19
4.1.3. Provide an identifier property (optional) .. 19
4.1.4. Prefer non-sealed classes and virtual methods (optional) .. 19

4.2. Implementing inheritance ... 20
4.3. Implementing Equals() and GetHashCode() ... 20
4.4. Lifecycle Callbacks .. 21
4.5. IValidatable callback .. 22

5. Basic O/R Mapping ... 23
5.1. Mapping declaration ... 23

5.1.1. XML Namespace .. 23
5.1.2. hibernate-mapping ... 23
5.1.3. class ... 24
5.1.4. id .. 26

5.1.4.1. generator .. 26
5.1.4.2. Hi/Lo Algorithm ... 27
5.1.4.3. UUID Hex Algorithm ... 28
5.1.4.4. UUID String Algorithm .. 28
5.1.4.5. GUID Algorithms ... 28
5.1.4.6. Identity columns and Sequences .. 28
5.1.4.7. Assigned Identifiers .. 29

5.1.5. composite-id ... 29
5.1.6. discriminator ... 30
5.1.7. version (optional) .. 30

NHibernate 1.0.2 ii

5.1.8. timestamp (optional) .. 30
5.1.9. property .. 31
5.1.10. many-to-one .. 33
5.1.11. one-to-one ... 34
5.1.12. component, dynamic-component .. 35
5.1.13. subclass .. 36
5.1.14. joined-subclass .. 36
5.1.15. map, set, list, bag ... 37
5.1.16. import ... 37

5.2. NHibernate Types .. 38
5.2.1. Entities and values ... 38
5.2.2. Basic value types ... 38
5.2.3. Custom value types ... 40
5.2.4. Any type mappings .. 41

5.3. SQL quoted identifiers .. 42
5.4. Modular mapping files .. 42

6. Collection Mapping ... 43
6.1. Persistent Collections ... 43
6.2. Mapping a Collection ... 44
6.3. Collections of Values and Many-To-Many Associations ... 45
6.4. One-To-Many Associations .. 47
6.5. Lazy Initialization .. 47
6.6. Sorted Collections .. 48
6.7. Using an <idbag> ... 49
6.8. Bidirectional Associations .. 50
6.9. Ternary Associations .. 51
6.10. Heterogeneous Associations .. 51
6.11. Collection examples ... 51

7. Component Mapping .. 54
7.1. Dependent objects .. 54
7.2. Collections of dependent objects ... 55
7.3. Components as IDictionary indices .. 56
7.4. Components as composite identifiers ... 56
7.5. Dynamic components ... 58

8. Inheritance Mapping ... 59
8.1. The Three Strategies ... 59
8.2. Limitations .. 61

9. Manipulating Persistent Data .. 63
9.1. Creating a persistent object ... 63
9.2. Loading an object ... 63
9.3. Querying ... 64

9.3.1. Scalar queries .. 65
9.3.2. The IQuery interface .. 66
9.3.3. Filtering collections ... 67
9.3.4. Criteria queries .. 67
9.3.5. Queries in native SQL .. 67

9.4. Updating objects .. 68
9.4.1. Updating in the same ISession .. 68
9.4.2. Updating detached objects .. 68
9.4.3. Reattaching detached objects .. 69

9.5. Deleting persistent objects .. 70
9.6. Flush ... 70

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 1.0.2 iii

9.7. Ending a Session .. 71
9.7.1. Flushing the Session .. 71
9.7.2. Committing the database transaction ... 71
9.7.3. Closing the ISession .. 71

9.8. Exception handling ... 72
9.9. Lifecyles and object graphs ... 72
9.10. Interceptors .. 73
9.11. Metadata API ... 75

10. Transactions And Concurrency ... 76
10.1. Configurations, Sessions and Factories .. 76
10.2. Threads and connections ... 76
10.3. Considering object identity ... 76
10.4. Optimistic concurrency control .. 77

10.4.1. Long session with automatic versioning .. 77
10.4.2. Many sessions with automatic versioning .. 77
10.4.3. Application version checking ... 78

10.5. Session disconnection ... 78
10.6. Pessimistic Locking .. 79

11. HQL: The Hibernate Query Language .. 81
11.1. Case Sensitivity .. 81
11.2. The from clause .. 81
11.3. Associations and joins .. 81
11.4. The select clause .. 82
11.5. Aggregate functions ... 83
11.6. Polymorphic queries ... 83
11.7. The where clause .. 84
11.8. Expressions .. 85
11.9. The order by clause .. 87
11.10. The group by clause .. 87
11.11. Subqueries ... 88
11.12. HQL examples ... 88
11.13. Tips & Tricks ... 90

12. Criteria Queries .. 92
12.1. Creating an ICriteria instance .. 92
12.2. Narrowing the result set .. 92
12.3. Ordering the results .. 93
12.4. Associations ... 93
12.5. Dynamic association fetching .. 93
12.6. Example queries ... 94

13. Native SQL Queries ... 95
13.1. Creating a SQL based IQuery .. 95
13.2. Alias and property references .. 95
13.3. Named SQL queries ... 95

14. Improving performance .. 97
14.1. Understanding Collection performance .. 97

14.1.1. Taxonomy ... 97
14.1.2. Lists, maps and sets are the most efficient collections to update 97
14.1.3. Bags and lists are the most efficient inverse collections .. 98
14.1.4. One shot delete .. 98

14.2. Proxies for Lazy Initialization ... 99
14.3. Using batch fetching ... 100
14.4. The Second Level Cache ... 101

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 1.0.2 iv

14.4.1. Cache mappings .. 102
14.4.2. Strategy: read only ... 102
14.4.3. Strategy: read/write .. 102
14.4.4. Strategy: nonstrict read/write .. 102

14.5. Managing the ISession Cache .. 103
14.6. The Query Cache ... 103

15. Toolset Guide .. 105
15.1. Schema Generation ... 105

15.1.1. Customizing the schema ... 105
15.1.2. Running the tool .. 106
15.1.3. Properties .. 107
15.1.4. Using Ant ... 107
15.1.5. Incremental schema updates ... 108
15.1.6. Using Ant for incremental schema updates .. 108

15.2. Code Generation .. 109
15.2.1. The config file (optional) ... 109
15.2.2. The meta attribute .. 110
15.2.3. Basic finder generator .. 112
15.2.4. Velocity based renderer/generator ... 113

15.3. Mapping File Generation .. 113
15.3.1. Running the tool .. 114

16. Example: Parent/Child .. 116
16.1. A note about collections .. 116
16.2. Bidirectional one-to-many ... 116
16.3. Cascading lifecycle ... 117
16.4. Using cascading Update() ... 118
16.5. Conclusion ... 120

17. Example: Weblog Application ... 121
17.1. Persistent Classes ... 121
17.2. Hibernate Mappings ... 122
17.3. NHibernate Code .. 123

18. Example: Various Mappings ... 126
18.1. Employer/Employee ... 126
18.2. Author/Work .. 127
18.3. Customer/Order/Product ... 129

19. Best Practices .. 132
I. NHibernateContrib Documentation ... 134

Preface .. cxxxv
20. NHibernate.Caches ... 136

20.1. How to use a cache? ... 136
20.2. Prevalence Cache Configuration .. 137
20.3. SysCache Configuration ... 137

21. NHibernate.Mapping.Attributes ... 138
21.1. How to use it? .. 138
21.2. Tips ... 139
21.3. Know issues and TODOs .. 140
21.4. Developer Notes ... 141

22. NHibernate.Tool.hbm2net ... 143
23. Nullables ... 144

23.1. How to use it? .. 144

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 1.0.2 v

Preface
Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. NHibernate is an object/relational mapping tool for .NET environments. The
term object/relational mapping (ORM) refers to the technique of mapping a data representation from an object
model to a relational data model with a SQL-based schema.

NHibernate not only takes care of the mapping from .NET classes to database tables (and from .NET data types
to SQL data types), but also provides data query and retrieval facilities and can significantly reduce develop-
ment time otherwise spent with manual data handling in SQL and ADO.NET.

NHibernate's goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. NHibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the .NET-based middle-tier. However, NHibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to a graph of objects.

If you are new to NHibernate and Object/Relational Mapping or even .NET Framework, please follow these
steps:

1. Read Chapter 1, Quickstart with IIS and Microsoft SQL Server for a 30 minute tutorial, using Internet In-
formation Services (IIS) web server.

2. Read Chapter 2, Architecture to understand the environments where NHibernate can be used.

3. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action (http://www.manning.com/bauer) if you need more help with application design or if you prefer a
step-by-step tutorial. Also visit http://nhibernate.sourceforge.net/NHibernateEg/ for NHibernate tutorial
with examples.

4. FAQs are answered on the NHibernate website.

5. Third party demos, examples and tutorials are linked on the NHibernate website.

6. The Community Area on the NHibernate website is a good source for design patterns and various integra-
tion solutions (ASP.NET, Windows Forms).

If you have questions, use the user forum linked on the NHibernate website. We also provide a JIRA issue
trackings system for bug reports and feature requests. If you are interested in the development of NHibernate,
join the developer mailing list. If you are interested in translating this documentation into your language, con-
tact us on the developer mailing list.

NHibernate 1.0.2 vi

Chapter 1. Quickstart with IIS and Microsoft SQL
Server

1.1. Getting started with NHibernate

This tutorial explains a setup of NHibernate 1.0.2 within a Microsoft environment. The tools used in this tutori-
al are:

1. Microsoft Internet Information Services (IIS) - web server supporting ASP.NET.

2. Microsoft SQL Server 2000 - the database server. This tutorial uses the desktop edition (MSDE), a free
download from Microsoft. Support for other databases is only a matter of changing the NHibernate SQL
dialect and driver configuration.

3. Microsoft Visual Studio .NET 2003 - the development environment.

First, we have to create a new Web project. We use the name QuickStart, the project web virtual directory will
http://localhost/QuickStart. In the project, add a reference to NHibernate.dll. Visual Studio will auto-
matically copy the library and its dependencies to the project output directory. If you are using a database other
than SQL Server, add a reference to the driver assembly to your project.

We now set up the database connection information for NHibernate. To do this, open the file Web.config auto-
matically generated for your project and add configuration elements according to the listing below:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<!-- Add this element -->
<configSections>

<section
name="hibernate-configuration"
type="NHibernate.Cfg.ConfigurationSectionHandler, NHibernate"

/>
</configSections>

<!-- Add this element -->
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.0">

<session-factory>
<property name="dialect">NHibernate.Dialect.MsSql2000Dialect</property>
<property name="connection.provider">NHibernate.Connection.DriverConnectionProvider</property>
<property name="connection.connection_string">Server=(local);initial catalog=quickstart;Integrated Security=SSPI</property>

<mapping assembly="QuickStart" />
</session-factory>

</hibernate-configuration>

<!-- Leave the system.web section unchanged -->
<system.web>

...
</system.web>

</configuration>

The <configSections> element contains definitions of sections that follow and handlers to use to process their
content. We declare the handler for the configuration section here. The <hibernate-configuration> section
contains the configuration itself, telling NHibernate that we will use a Microsoft SQL Server 2000 database and
connect to it through the specified connection string. The dialect is a required setting, databases differ in their
interpretation of the SQL "standard". NHibernate will take care of the differences and comes bundled with dia-

NHibernate 1.0.2 1

lects for several major commercial and open source databases.

An ISessionFactory is NHibernate's concept of a single datastore, multiple databases can be used by creating
multiple XML configuration files and creating multiple Configuration and ISessionFactory objects in your
application.

The last element of the <hibernate-configuration> section declares QuickStart as the name of an assembly
containing class declarations and mapping files. The mapping files contain the metadata for the mapping of the
POCO class to a database table (or multiple tables). We'll come back to mapping files soon. Let's write the
POCO class first and then declare the mapping metadata for it.

1.2. First persistent class

NHibernate works best with the Plain Old CLR Objects (POCOs, sometimes called Plain Ordinary CLR Ob-
jects) programming model for persistent classes. A POCO has its data accessible through the standard .NET
property mechanisms, shielding the internal representation from the publicly visible interface:

using System;

namespace QuickStart
{

public class Cat
{

private string id;
private string name;
private char sex;
private float weight;

public Cat()
{
}

public string Id
{

get { return id; }
set { id = value; }

}

public string Name
{

get { return name; }
set { name = value; }

}

public char Sex
{

get { return sex; }
set { sex = value; }

}

public float Weight
{

get { return weight; }
set { weight = value; }

}
}

}

NHibernate is not restricted in its usage of property types, all .NET types and primitives (like string, char and
DateTime) can be mapped, including classes from the System.Collections namespace. You can map them as
values, collections of values, or associations to other entities. The Id is a special property that represents the
database identifier (primary key) of that class, it is highly recommended for entities like a Cat. NHibernate can

Quickstart with IIS and Microsoft SQL Server

NHibernate 1.0.2 2

use identifiers only internally, without having to declare them on the class, but we would lose some of the flex-
ibility in our application architecture.

No special interface has to be implemented for persistent classes nor do we have to subclass from a special root
persistent class. NHibernate also doesn't use any build time processing, such as IL manipulation, it relies solely
on .NET reflection and runtime class enhancement (through Castle.DynamicProxy library). So, without any de-
pendency in the POCO class on NHibernate, we can map it to a database table.

1.3. Mapping the cat

The Cat.hbm.xml mapping file contains the metadata required for the object/relational mapping. The metadata
includes declaration of persistent classes and the mapping of properties (to columns and foreign key relation-
ships to other entities) to database tables.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"

namespace="QuickStart" assembly="QuickStart">

<class name="Cat" table="Cat">

<!-- A 32 hex character is our surrogate key. It's automatically
generated by NHibernate with the UUID pattern. -->

<id name="Id">
<column name="CatId" sql-type="char(32)" not-null="true"/>
<generator class="uuid.hex" />

</id>

<!-- A cat has to have a name, but it shouldn' be too long. -->
<property name="Name">

<column name="Name" length="16" not-null="true" />
</property>
<property name="Sex" />
<property name="Weight" />

</class>

</hibernate-mapping>

Every persistent class should have an identifer attribute (actually, only classes representing entities, not depend-
ent value objects, which are mapped as components of an entity). This property is used to distinguish persistent
objects: Two cats are equal if catA.Id.Equals(catB.Id) is true, this concept is called database identity.
NHibernate comes bundled with various identifer generators for different scenarios (including native generators
for database sequences, hi/lo identifier tables, and application assigned identifiers). We use the UUID generator
(only recommended for testing, as integer surrogate keys generated by the database should be prefered) and
also specify the column CatId of the table Cat for the NHibernate generated identifier value (as a primary key
of the table).

All other properties of Cat are mapped to the same table. In the case of the Name property, we mapped it with an
explicit database column declaration. This is especially useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with NHibernate's SchemaExport tool. All other
properties are mapped using NHibernate's default settings, which is what you need most of the time. The table
Cat in the database looks like this:

Column | Type | Modifiers
--------+--------------+----------------------
CatId | char(32) | not null, primary key
Name | nvarchar(16) | not null
Sex | nchar(1) |
Weight | real |

Quickstart with IIS and Microsoft SQL Server

NHibernate 1.0.2 3

You should now create the database and this table manually, and later read Chapter 15, Toolset Guide if you
want to automate this step with the SchemaExport tool. This tool can create a full SQL DDL, including table
definition, custom column type constraints, unique constraints and indexes. If you are using SQL Server, you
should also make sure the ASPNET user has permissions to use the database.

1.4. Playing with cats

We're now ready to start NHibernate's ISession. It is the persistence manager interface, we use it to store and
retrieve Cats to and from the database. But first, we've to get an ISession (NHibernate's unit-of-work) from the
ISessionFactory:

ISessionFactory sessionFactory =
new Configuration().Configure().BuildSessionFactory();

An ISessionFactory is responsible for one database and may only use one XML configuration file
(Web.config or hibernate.cfg.xml). You can set other properties (and even change the mapping metadata) by
accessing the Configuration before you build the ISessionFactory (it is immutable). Where do we create the
ISessionFactory and how can we access it in our application?

An ISessionFactory is usually only built once, e.g. at startup inside Application_Start event handler. This
also means you should not keep it in an instance variable in your ASP.NET pages, but in some other location.
Furthermore, we need some kind of Singleton, so we can access the ISessionFactory easily in application
code. The approach shown next solves both problems: configuration and easy access to a ISessionFactory.

We implement a NHibernateHelper helper class:

using System;
using System.Web;
using NHibernate;
using NHibernate.Cfg;

namespace QuickStart
{

public sealed class NHibernateHelper
{

private const string CurrentSessionKey = "nhibernate.current_session";
private static readonly ISessionFactory sessionFactory;

static NHibernateHelper()
{

sessionFactory = new Configuration().Configure().BuildSessionFactory();
}

public static ISession GetCurrentSession()
{

HttpContext context = HttpContext.Current;
ISession currentSession = context.Items[CurrentSessionKey] as ISession;

if (currentSession == null)
{

currentSession = sessionFactory.OpenSession();
context.Items[CurrentSessionKey] = currentSession;

}

return currentSession;
}

public static void CloseSession()
{

HttpContext context = HttpContext.Current;
ISession currentSession = context.Items[CurrentSessionKey] as ISession;

Quickstart with IIS and Microsoft SQL Server

NHibernate 1.0.2 4

if (currentSession == null)
{

// No current session
return;

}

currentSession.Close();
context.Items.Remove(CurrentSessionKey);

}

public static void CloseSessionFactory()
{

if (sessionFactory != null)
{

sessionFactory.Close();
}

}
}

}

This class does not only take care of the ISessionFactory with its static attribute, but also has code to remem-
ber the ISession for the current HTTP request.

An ISessionFactory is threadsafe, many threads can access it concurrently and request ISessions. An ISes-

sion is a non-threadsafe object that represents a single unit-of-work with the database. ISessions are opened
by an ISessionFactory and are closed when all work is completed:

ISession session = NHibernateHelper.GetCurrentSession();

ITransaction tx = session.BeginTransaction();

Cat princess = new Cat();
princess.Name = "Princess";
princess.Sex = 'F';
princess.Weight = 7.4f;

session.Save(princess);
tx.Commit();

NHibernateHelper.CloseSession();

In an ISession, every database operation occurs inside a transaction that isolates the database operations (even
read-only operations). We use NHibernate's ITransaction API to abstract from the underlying transaction
strategy (in our case, ADO.NET transactions). Please note that the example above does not handle any excep-
tions.

Also note that you may call NHibernateHelper.GetCurrentSession(); as many times as you like, you will al-
ways get the current ISession of this HTTP request. You have to make sure the ISession is closed after your
unit-of-work completes, either in Application_EndRequest event handler in your application class or in a Ht-

tpModule before the HTTP response is sent. The nice side effect of the latter is easy lazy initialization: the
ISession is still open when the view is rendered, so NHibernate can load unitialized objects while you navigate
the graph.

NHibernate has various methods that can be used to retrieve objects from the database. The most flexible way
is using the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented exten-
sion to SQL:

ITransaction tx = session.BeginTransaction();

IQuery query = session.CreateQuery("select c from Cat as c where c.Sex = :sex");
query.SetCharacter("sex", 'F');

Quickstart with IIS and Microsoft SQL Server

NHibernate 1.0.2 5

foreach (Cat cat in query.Enumerable())
{

Console.Out.WriteLine("Female Cat: " + cat.Name);
}

tx.Commit();

NHibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries.
NHibernate of course uses IDbCommands and parameter binding for all SQL communication with the database.
You may also use NHibernate's direct SQL query feature or get a plain ADO.NET connection from an ISes-

sion in rare cases.

1.5. Finally

We only scratched the surface of NHibernate in this small tutorial. Please note that we don't include any
ASP.NET specific code in our examples. You have to create an ASP.NET page yourself and insert the
NHibernate code as you see fit.

Keep in mind that NHibernate, as a data access layer, is tightly integrated into your application. Usually, all
other layers depend on the persistence mechanism. Make sure you understand the implications of this design.

Quickstart with IIS and Microsoft SQL Server

NHibernate 1.0.2 6

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the NHibernate architecture:

This diagram shows NHibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, NHibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own ADO.NET connections and manage its own transactions. This approach uses a minimal subset
of NHibernate's APIs:

The "full cream" architecture abstracts the application away from the underlying ADO.NET APIs and lets

NHibernate 1.0.2 7

NHibernate take care of the details.

Heres some definitions of the objects in the diagrams:

ISessionFactory (NHibernate.ISessionFactory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for ISession and a
client of IConnectionProvider. Might hold an optional (second-level) cache of data that is reusable
between transactions, at a process- or cluster-level.

ISession (NHibernate.ISession)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps an ADO.NET connection. Factory for ITransaction. Holds a mandatory (first-level) cache of
persistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent Objects and Collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary POCOs, the only special thing about them is that they are currently associated with (exactly one) ISes-
sion. As soon as the Session is closed, they will be detached and free to use in any application layer (e.g.
directly as data transfer objects to and from presentation).

Transient Objects and Collections
Instances of persistent classes that are not currently associated with a ISession. They may have been in-
stantiated by the application and not (yet) persisted or they may have been instantiated by a closed ISes-

sion.

ITransaction (NHibernate.ITransaction)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying ADO.NET transaction. An ISession might span several ITransac-
tions in some cases.

Architecture

NHibernate 1.0.2 8

IConnectionProvider (NHibernate.Connection.IConnectionProvider)
(Optional) A factory for ADO.NET connections and commands. Abstracts application from the concrete
vendor-specific implementations of IDbConnection and IDbCommand. Not exposed to application, but can
be extended/implemented by the developer.

IDriver (NHibernate.Driver.IDriver)
(Optional) An interface encapsulating differences between ADO.NET providers, such as parameter naming
conventions and supported ADO.NET features.

ITransactionFactory (NHibernate.Transaction.ITransactionFactory)
(Optional) A factory for ITransaction instances. Not exposed to the application, but can be extended/
implemented by the developer.

Given a "lite" architecture, the application bypasses the ITransaction/ITransactionFactory and/or IConnec-
tionProvider APIs to talk to ADO.NET directly.

Architecture

NHibernate 1.0.2 9

Chapter 3. ISessionFactory Configuration
Because NHibernate is designed to operate in many different environments, there are a large number of config-
uration parameters. Fortunately, most have sensible default values and NHibernate is distributed with an ex-
ample App.config file (found in src\NHibernate.Test) that shows the various options. You usually only have
to put that file in your project and customize it.

3.1. Programmatic Configuration

An instance of NHibernate.Cfg.Configuration represents an entire set of mappings of an application's .NET
types to a SQL database. The Configuration is used to build an (immutable) ISessionFactory. The mappings
are compiled from various XML mapping files.

You may obtain a Configuration instance by instantiating it directly. Heres an example of setting up a data-
store from mappings defined in two XML configuration files:

Configuration cfg = new Configuration()
.AddFile("Item.hbm.xml")
.AddFile("Bid.hbm.xml");

An alternative (sometimes better) way is to let NHibernate load a mapping file from an embedded resource:

Configuration cfg = new Configuration()
.AddClass(typeof(NHibernate.Auction.Item))
.AddClass(typeof(NHibernate.Auction.Bid));

Then NHibernate will look for mapping files named NHibernate.Auction.Item.hbm.xml and NHibern-

ate.Auction.Bid.hbm.xml embedded as resources in the assembly that the types are contained in. This ap-
proach eliminates any hardcoded filenames.

Another alternative (probably the best) way is to let NHibernate load all of the mapping files contained in an
Assembly:

Configuration cfg = new Configuration()
.AddAssembly("NHibernate.Auction");

Then NHibernate will look through the assembly for any resources that end with .hbm.xml. This approach
eliminates any hardcoded filenames and ensures the mapping files in the assembly get added.

If a tool like Visual Studio .NET or NAnt is used to build the assembly, then make sure that the .hbm.xml files
are compiled into the assembly as Embedded Resources.

A Configuration also specifies various optional properties:

IDictionary props = new Hashtable();
...
Configuration cfg = new Configuration()

.AddClass(typeof(NHibernate.Auction.Item))

.AddClass(typeof(NHibernate.Auction.Bind))

.SetProperties(props);

A Configuration is intended as a configuration-time object, to be discarded once an ISessionFactory is built.

NHibernate 1.0.2 10

3.2. Obtaining an ISessionFactory

When all mappings have been parsed by the Configuration, the application must obtain a factory for ISession
instances. This factory is intended to be shared by all application threads:

ISessionFactory sessions = cfg.BuildSessionFactory();

However, NHibernate does allow your application to instantiate more than one ISessionFactory. This is use-
ful if you are using more than one database.

3.3. User provided ADO.NET connection

An ISessionFactory may open an ISession on a user-provided ADO.NET connection. This design choice
frees the application to obtain ADO.NET connections wherever it pleases:

IDbConnection conn = myApp.GetOpenConnection();
ISession session = sessions.OpenSession(conn);

// do some data access work

The application must be careful not to open two concurrent ISessions on the same ADO.NET connection!

3.4. NHibernate provided ADO.NET connection

Alternatively, you can have the ISessionFactory open connections for you. The ISessionFactory must be
provided with ADO.NET connection properties in one of the following ways:

1. Pass an instance of IDictionary mapping property names to property values to Configura-

tion.SetProperties().
2. Add the properties to a configuration section in the application configuration file. The section should be

named nhibernate and its handler set to System.Configuration.NameValueSectionHandler.
3. Include <property> elements in a configuration section in the application configuration file. The section

should be named hibernate-configuration and its handler set to NHibern-

ate.Cfg.ConfigurationSectionHandler. The XML namespace of the section should be set to
urn:nhibernate-configuration-2.0.

4. Include <property> elements in hibernate.cfg.xml (discussed later).

If you take this approach, opening an ISession is as simple as:

ISession session = sessions.OpenSession(); // open a new Session
// do some data access work, an ADO.NET connection will be used on demand

All NHibernate property names and semantics are defined on the class NHibernate.Cfg.Environment. We will
now describe the most important settings for ADO.NET connection configuration.

NHibernate will obtain (and pool) connections using an ADO.NET data provider if you set the following prop-
erties:

Table 3.1. NHibernate ADO.NET Properties

ISessionFactory Configuration

NHibernate 1.0.2 11

Property name Purpose

hibernate.connection.provider_class The type of a custom IConnectionProvider.

eg. full.classname.of.ConnectionProvider if the
Provider is built into NHibernate, or
full.classname.of.ConnectionProvider, as-

sembly if using an implementation of IConnection-
Provider not included in NHibernate.

hibernate.connection.driver_class The type of a custom IDriver, if using DriverCon-

nectionProvider.

full.classname.of.Driver if the Driver is built into
NHibernate, or full.classname.of.Driver, as-

sembly if using an implementation of IDriver not in-
cluded in NHibernate.

This is usually not needed, most of the time the hi-

bernate.dialect will take care of setting the IDriver
using a sensible default. See the API documentation
of the specific IDialect for the defaults.

hibernate.connection.connection_string Connection string to use to obtain the connection.

hibernate.connection.isolation Set the ADO.NET transaction isolation level. Check
System.Data.IsolationLevel for meaningful values
and the database's documentation to ensure that level
is supported.

eg. Chaos, ReadCommitted, ReadUncommitted, Re-

peatableRead, Serializable, Unspecified

This is an example of how to specify the database connection properties inside a web.config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="nhibernate" type="System.Configuration.NameValueSectionHandler, System,

Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />
</configSections>

<nhibernate>
<add

key="hibernate.connection.provider"
value="NHibernate.Connection.DriverConnectionProvider"

/>
<add

key="hibernate.dialect"
value="NHibernate.Dialect.MsSql2000Dialect"

/>
<add

key="hibernate.connection.driver_class"
value="NHibernate.Driver.SqlClientDriver"

/>
<add

key="hibernate.connection.connection_string"
value="Server=127.0.0.1; Initial Catalog=thedatabase; Integrated Security=SSPI"

/>
<add

key="hibernate.connection.isolation"
value="ReadCommitted"

ISessionFactory Configuration

NHibernate 1.0.2 12

/>

</nhibernate>

<!-- other app specific config follows -->
</configuration>

NHibernate relies on the ADO.NET data provider implementation of connection pooling.

You may define your own plugin strategy for obtaining ADO.NET connections by implementing the interface
NHibernate.Connection.IConnectionProvider. You may select a custom implementation by setting hibern-

ate.connection.provider_class.

3.5. Optional configuration properties

There are a number of other properties that control the behaviour of NHibernate at runtime. All are optional and
have reasonable default values.

System-level properties can only be set manually by setting static properties of NHibernate.Cfg.Environment
class or be defined in the <nhibernate> section of the application configuration file. These properties cannot be
set using Configuration.SetProperties or be defined in the <hibernate-configuration> section of the ap-
plication configuration file.

Table 3.2. NHibernate Configuration Properties

Property name Purpose

hibernate.dialect The classname of a NHibernate Dialect - enables
certain platform dependent features.

eg. full.classname.of.Dialect, assembly

hibernate.default_schema Qualify unqualified tablenames with the given
schema/tablespace in generated SQL.

eg. SCHEMA_NAME

hibernate.use_outer_join Enables outer join fetching. Deprecated, use
max_fetch_depth.

eg. true | false

hibernate.max_fetch_depth Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A 0 disables default outer join fetching.

eg. recommended values between 0 and 3

hibernate.use_reflection_optimizer Enables use of a runtime-generated class to set or get
properties of an entity or component instead of using
runtime reflection (System-level property). The use of
the reflection optimizer inflicts a certain startup cost
on the application but should lead to better perform-
ance in the long run. You can not set this property in
hibernate.cfg.xml or <hibernate-configuration>

ISessionFactory Configuration

NHibernate 1.0.2 13

Property name Purpose

section of the application configuration file.

eg. true | false

hibernate.cache.provider_class The classname of a custom ICacheProvider.

eg. classname.of.CacheProvider, assembly

hibernate.cache.use_minimal_puts Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads (useful for
clustered caches).

eg. true | false

hibernate.cache.use_query_cache Enable the query cache, individual queries still have
to be set cacheable.

eg. true | false

hibernate.cache.query_cache_factory The classname of a custom IQueryCacheFactory in-
terface, defaults to the built-in Stand-

ardQueryCacheFactory.

eg. classname.of.QueryCacheFactory, assembly

hibernate.cache.region_prefix A prefix to use for second-level cache region names.

eg. prefix

hibernate.query.substitutions Mapping from tokens in NHibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

eg. hqlLiteral=SQL_LITERAL, hqlFunc-

tion=SQLFUNC

hibernate.show_sql Write all SQL statements to console.

eg. true | false

hibernate.hbm2ddl.auto Automatically export schema DDL to the database
when the ISessionFactory is created. With create-

drop, the database schema will be dropped when the
ISessionFactory is closed explicitly.

eg. create | create-drop

3.5.1. SQL Dialects

You should always set the hibernate.dialect property to the correct NHibernate.Dialect.Dialect subclass
for your database. This is not strictly essential unless you wish to use native or sequence primary key genera-
tion or pessimistic locking (with, eg. ISession.Lock() or IQuery.SetLockMode()). However, if you specify a
dialect, NHibernate will use sensible defaults for some of the other properties listed above, saving you the ef-
fort of specifying them manually.

ISessionFactory Configuration

NHibernate 1.0.2 14

Table 3.3. NHibernate SQL Dialects (hibernate.dialect)

RDBMS Dialect

DB2 NHibernate.Dialect.DB2Dialect

PostgreSQL NHibernate.Dialect.PostgreSQLDialect

MySQL NHibernate.Dialect.MySQLDialect

Oracle (any version) NHibernate.Dialect.OracleDialect

Oracle 9/10g NHibernate.Dialect.Oracle9Dialect

Sybase NHibernate.Dialect.SybaseDialect

Microsoft SQL Server 2000 NHibernate.Dialect.MsSql2000Dialect

Microsoft SQL Server 7 NHibernate.Dialect.MsSql7Dialect

Firebird NHibernate.Dialect.FirebirdDialect

SQLite NHibernate.Dialect.SQLiteDialect

Additional dialects may be available in the NHibernateContrib package (see Part I, “NHibernateContrib Docu-
mentation”). At the time of writing this package contains support for Microsoft Access (Jet) database engine.

3.5.2. Outer Join Fetching

If your database supports ANSI or Oracle style outer joins, outer join fetching might increase performance by
limiting the number of round trips to and from the database (at the cost of possibly more work performed by the
database itself). Outer join fetching allows a graph of objects connected by many-to-one, one-to-many or one-
to-one associations to be retrieved in a single SQL SELECT.

By default, the fetched graph when loading an objects ends at leaf objects, collections, objects with proxies, or
where circularities occur.

For a particular association, fetching may be enabled or disabled (and the default behaviour overridden) by set-
ting the outer-join attribute in the XML mapping.

Outer join fetching may be disabled globally by setting the property hibernate.max_fetch_depth to 0. A set-
ting of 1 or higher enables outer join fetching for all one-to-one and many-to-one associations, which are, also
by default, set to auto outer join. However, one-to-many associations and collections are never fetched with an
outer-join, unless explicitly declared for each particular association. This behavior can also be overriden at
runtime with Hibernate queries.

In NHibernate 1.0, fetch attribute can be used instead of outer-join. fetch="join" is equivalent to outer-

join="true", and fetch="select" corresponds to outer-join="false".

3.5.3. Custom ICacheProvider

You may integrate a process-level (or clustered) second-level cache system by implementing the interface
NHibernate.Cache.ICacheProvider. You may select the custom implementation by setting hibern-

ate.cache.provider_class.

ISessionFactory Configuration

NHibernate 1.0.2 15

3.5.4. Query Language Substitution

You may define new NHibernate query tokens using hibernate.query.substitutions. For example:

hibernate.query.substitutions true=1, false=0

would cause the tokens true and false to be translated to integer literals in the generated SQL.

hibernate.query.substitutions toLowercase=LOWER

would allow you to rename the SQL LOWER function.

3.6. Logging

NHibernate logs various events using Apache log4net.

You may download log4net from http://logging.apache.org/log4net/. To use log4net you will need a
log4net configuration section in the application configuration file. An example of the configuration section is
distributed with NHibernate in the src/NHibernate.Test project.

We strongly recommend that you familiarize yourself with NHibernate's log messages. A lot of work has been
put into making the NHibernate log as detailed as possible, without making it unreadable. It is an essential
troubleshooting device. Also don't forget to enable SQL logging as described above (hibernate.show_sql), it
is your first step when looking for performance problems.

3.7. Implementing an INamingStrategy

The interface NHibernate.Cfg.INamingStrategy allows you to specify a "naming standard" for database ob-
jects and schema elements.

You may provide rules for automatically generating database identifiers from .NET identifiers or for processing
"logical" column and table names given in the mapping file into "physical" table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by NHibernate is quite minimal.

You may specify a different strategy by calling Configuration.SetNamingStrategy() before adding map-
pings:

ISessionFactory sf = new Configuration()
.SetNamingStrategy(ImprovedNamingStrategy.Instance)
.AddFile("Item.hbm.xml")
.AddFile("Bid.hbm.xml")
.BuildSessionFactory();

NHibernate.Cfg.ImprovedNamingStrategy is a built-in strategy that might be a useful starting point for some
applications.

3.8. XML Configuration File

An alternative approach is to specify a full configuration in a file named hibernate.cfg.xml. This file can be
used as a replacement for the <nhibernate;> or <hibernate-configuration> sections of the application con-

ISessionFactory Configuration

NHibernate 1.0.2 16

figuration file.

The XML configuration file is by default expected to be in your application directory. Here is an example:

<?xml version='1.0' encoding='utf-8'?>
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.0">

<!-- an ISessionFactory instance -->
<session-factory>

<!-- properties -->
<property name="connection.provider">NHibernate.Connection.DriverConnectionProvider</property>
<property name="connection.driver_class">NHibernate.Driver.SqlClientDriver</property>
<property name="connection.connection_string">Server=localhost;initial catalog=nhibernate;User Id=;Password=</property>
<property name="show_sql">false</property>
<property name="dialect">NHibernate.Dialect.MsSql2000Dialect</property>
<property name="use_outer_join">true</property>

<!-- mapping files -->
<mapping resource="NHibernate.Auction.Item.hbm.xml" assembly="NHibernate.Auction" />
<mapping resource="NHibernate.Auction.Bid.hbm.xml" assembly="NHibernate.Auction" />

</session-factory>

</hibernate-configuration>

Configuring NHibernate is then as simple as

ISessionFactory sf = new Configuration().Configure().BuildSessionFactory();

You can pick a different XML configuration file using

ISessionFactory sf = new Configuration()
.Configure("/path/to/config.cfg.xml")
.BuildSessionFactory();

ISessionFactory Configuration

NHibernate 1.0.2 17

Chapter 4. Persistent Classes
Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Persistent classes have, as the name implies, transient and also
persistent instance stored in the database.

NHibernate works best if these classes follow some simple rules, also known as the Plain Old CLR Object
(POCO) programming model.

4.1. A simple POCO example

Most .NET applications require a persistent class representing felines.

using System;
using Iesi.Collections;

namespace Eg
{

public class Cat
{

private long id; // identifier
private string name;
private DateTime birthdate;
private Cat mate;
private ISet kittens
private Color color;
private char sex;
private float weight;

public virtual long Id
{

get { return id; }
set { id = value; }

}

public virtual string Name
{

get { return name; }
set { name = value; }

}

public virtual Cat Mate
{

get { return mate; }
set { mate = value; }

}

public virtual DateTime Birthdate
{

get { return birthdate; }
set { birthdate = value; }

}

public virtual float Weight
{

get { return weight; }
set { weight = value; }

}

public virtual Color Color
{

get { return color; }
set { color = value; }

}

NHibernate 1.0.2 18

public virtual ISet Kittens
{

get { return kittens; }
set { kittens = value; }

}

// AddKitten not needed by NHibernate
public virtual void AddKitten(Cat kitten)
{

kittens.Add(kitten);
}

public virtual char Sex
{

get { return sex; }
set { sex = value; }

}
}

}

There are four main rules to follow here:

4.1.1. Declare accessors and mutators for persistent fields

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist instance vari-
ables. We believe it is far better to decouple this implementation detail from the persistence mechanism.
NHibernate persists properties, using their getter and setter methods.

Properties need not be declared public - NHibernate can persist a property with an internal, protected, pro-
tected internal or private visibility.

4.1.2. Implement a default constructor

Cat has an implicit default (no-argument) constructor. All persistent classes must have a default constructor
(which may be non-public) so NHibernate can instantiate them using ConstructorInfo.Invoke(null).

4.1.3. Provide an identifier property (optional)

Cat has a property called Id. This property holds the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, string or System.DateTime.
(If your legacy database table has composite keys, you can even use a user-defined class with properties of
these types - see the section on composite identifiers below.)

The identifier property is optional. You can leave it off and let NHibernate keep track of object identifiers in-
ternally. However, for many applications it is still a good (and very popular) design decision.

What's more, some functionality is available only to classes which declare an identifier property:

• Cascaded updates (see "Lifecycle Objects")
• ISession.SaveOrUpdate()

We recommend you declare consistently-named identifier properties on persistent classes.

4.1.4. Prefer non-sealed classes and virtual methods (optional)

Persistent Classes

NHibernate 1.0.2 19

A central feature of NHibernate, proxies, depends upon the persistent class being non-sealed and all its meth-
ods, properties and events declared as virtual. Another possibility is for the class to implement an interface that
declares all public members.

You can persist sealed classes that do not implement an interface and don't have virtual members with
NHibernate, but you won't be able to use proxies - which will limit your options for performance tuning some-
what.

4.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from Cat.

using System;
namespace Eg
{

public class DomesticCat : Cat
{

private string name;

public virtual string Name
{

get { return name; }
set { name = value; }

}
}

}

4.3. Implementing Equals() and GetHashCode()

You have to override the Equals() and GetHashCode() methods if you intend to mix objects of persistent
classes (e.g. in an ISet).

This only applies if these objects are loaded in two different ISessions, as NHibernate only guarantees identity
(a == b , the default implementation of Equals()) inside a single ISession!

Even if both objecs a and b are the same database row (they have the same primary key value as their identifi-
er), we can't guarantee that they are the same object instance outside of a particular ISession context.

The most obvious way is to implement Equals()/GetHashCode() by comparing the identifier value of both ob-
jects. If the value is the same, both must be the same database row, they are therefore equal (if both are added
to an ISet, we will only have one element in the ISet). Unfortunately, we can't use that approach. NHibernate
will only assign identifier values to objects that are persistent, a newly created instance will not have any identi-
fier value! We recommend implementing Equals() and GetHashCode() using Business key equality.

Business key equality means that the Equals() method compares only the properties that form the business
key, a key that would identify our instance in the real world (a natural candidate key):

public class Cat
{

...
public override bool Equals(object other)
{

if (this == other) return true;

Cat cat = other as Cat;
if (cat == null) return false; // null or not a cat

Persistent Classes

NHibernate 1.0.2 20

if (Name != cat.Name) return false;
if (!Birthday.Equals(cat.Birthday)) return false;

return true;
}

public override int GetHashCode()
{

unchecked
{

int result;
result = Name.GetHashCode();
result = 29 * result + Birthday.GetHashCode();
return result;

}
}

}

Keep in mind that our candidate key (in this case a composite of name and birthday) has to be only valid for a
particular comparison operation (maybe even only in a single use case). We don't need the stability criteria we
usually apply to a real primary key!

4.4. Lifecycle Callbacks

Optionally, a persistent class might implement the interface ILifecycle which provides some callbacks that al-
low the persistent object to perform necessary initialization/cleanup after save or load and before deletion or
update.

The NHibernate IInterceptor offers a less intrusive alternative, however.

public interface ILifecycle
{ (1)

LifecycleVeto OnSave(ISession s); (2)
LifecycleVeto OnUpdate(ISession s); (3)
LifecycleVeto OnDelete(ISession s); (4)
void OnLoad(ISession s, object id);

}

(1) OnSave - called just before the object is saved or inserted
(2) OnUpdate - called just before an object is updated (when the object is passed to ISession.Update())
(3) OnDelete - called just before an object is deleted
(4) OnLoad - called just after an object is loaded

OnSave(), OnDelete() and OnUpdate() may be used to cascade saves and deletions of dependent objects. This
is an alternative to declaring cascaded operations in the mapping file. OnLoad() may be used to initialize transi-
ent properties of the object from its persistent state. It may not be used to load dependent objects since the
ISession interface may not be invoked from inside this method. A further intended usage of OnLoad(), On-
Save() and OnUpdate() is to store a reference to the current ISession for later use.

Note that OnUpdate() is not called every time the object's persistent state is updated. It is called only when a
transient object is passed to ISession.Update().

If OnSave(), OnUpdate() or OnDelete() return LifecycleVeto.Veto, the operation is silently vetoed. If a
CallbackException is thrown, the operation is vetoed and the exception is passed back to the application.

Note that OnSave() is called after an identifier is assigned to the object, except when native key generation is

Persistent Classes

NHibernate 1.0.2 21

used.

4.5. IValidatable callback

If the persistent class needs to check invariants before its state is persisted, it may implement the following in-
terface:

public interface IValidatable
{

void Validate();
}

The object should throw a ValidationFailure if an invariant was violated. An instance of Validatable should
not change its state from inside Validate().

Unlike the callback methods of the ILifecycle interface, Validate() might be called at unpredictable times.
The application should not rely upon calls to Validate() for business functionality.

Persistent Classes

NHibernate 1.0.2 22

Chapter 5. Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings are defined in an XML document. The mapping document is designed to be read-
able and hand-editable. The mapping language is object-centric, meaning that mappings are constructed around
persistent class declarations, not table declarations.

Note that, even though many NHibernate users choose to define XML mappings by hand, a number of tools ex-
ist to generate the mapping document, including NHibernate.Mapping.Attributes library and various template-
based code generators (CodeSmith, MyGeneration).

Let's kick off with an example mapping:

<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0" assembly="Eg"

namespace="Eg">

<class name="Cat" table="CATS" discriminator-value="C">
<id name="Id" column="uid" type="Int64">

<generator class="hilo"/>
</id>
<discriminator column="subclass" type="Char"/>
<property name="BirthDate" type="Date"/>
<property name="Color" not-null="true"/>
<property name="Sex" not-null="true" update="false"/>
<property name="Weight"/>
<many-to-one name="Mate" column="mate_id"/>
<set name="Kittens">

<key column="mother_id"/>
<one-to-many class="Cat"/>

</set>
<subclass name="DomesticCat" discriminator-value="D">

<property name="Name" type="String"/>
</subclass>

</class>

<class name="Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by NHibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not-null attribute.)

5.1.1. XML Namespace

All XML mappings should declare the XML namespace shown. The actual schema definition may be found in
the src\nhibernate-mapping-2.0.xsd file in the NHibernate distribution.

Tip: to enable IntelliSense for mapping and configuration files, copy the appropriate .xsd files to <VS.NET in-

stallation directory>\Common7\Packages\schemas\xml.

5.1.2. hibernate-mapping

NHibernate 1.0.2 23

This element has several optional attributes. The schema attribute specifies that tables referred to by this map-
ping belong to the named schema. If specified, tablenames will be qualified by the given schema name. If miss-
ing, tablenames will be unqualified. The default-cascade attribute specifies what cascade style should be as-
sumed for properties and collections which do not specify a cascade attribute. The auto-import attribute lets
us use unqualified class names in the query language, by default. The assembly and namespace attributes spe-
cify the assembly where persistent classes are located and the namespace they are declared in.

<hibernate-mapping
schema="schemaName" (1)
default-cascade="none|save-update" (2)
auto-import="true|false" (3)
assembly="Eg" (4)
namespace="Eg" (5)

/>

(1) schema (optional): The name of a database schema.
(2) default-cascade (optional - defaults to none): A default cascade style.
(3) auto-import (optional - defaults to true): Specifies whether we can use unqualified class names (of

classes in this mapping) in the query language.
(

5

(4))

assembly and namespace(optional): Specify assembly and namespace to assume for unqualified class
names in the mapping document.

If you are not using assembly and namespace attributes, you have to specify fully-qualified class names, includ-
ing the name of the assembly that classes are declared in.

If you have two persistent classes with the same (unqualified) name, you should set auto-import="false".
NHibernate will throw an exception if you attempt to assign two classes to the same "imported" name.

5.1.3. class

You may declare a persistent class using the class element:

<class
name="ClassName" (1)
table="tableName" (2)
discriminator-value="discriminator_value" (3)
mutable="true|false" (4)
schema="owner" (5)
proxy="ProxyInterface" (6)
dynamic-update="true|false" (7)
dynamic-insert="true|false" (8)
select-before-update="true|false" (9)
polymorphism="implicit|explicit" (10)
where="arbitrary sql where condition" (11)
persister="PersisterClass" (12)
batch-size="N" (13)
optimistic-lock="none|version|dirty|all" (14)
lazy="true|false" (15)

/>

(1) name: The fully qualified .NET class name of the persistent class (or interface), including its assembly
name.

(2) table: The name of its database table.
(3) discriminator-value (optional - defaults to the class name): A value that distiguishes individual sub-

classes, used for polymorphic behaviour. Acceptable values include null and not null.
(4) mutable (optional, defaults to true): Specifies that instances of the class are (not) mutable.
(5) schema (optional): Override the schema name specified by the root <hibernate-mapping> element.
(6) proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of

Basic O/R Mapping

NHibernate 1.0.2 24

the class itself.
(7) dynamic-update (optional, defaults to false): Specifies that UPDATE SQL should be generated at runtime

and contain only those columns whose values have changed.
(8) dynamic-insert (optional, defaults to false): Specifies that INSERT SQL should be generated at runtime

and contain only the columns whose values are not null.
(9) select-before-update (optional, defaults to false): Specifies that NHibernate should never perform an

SQL UPDATE unless it is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using update()), this means that NHibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

(10) polymorphism (optional, defaults to implicit): Determines whether implicit or explicit query polymorph-
ism is used.

(11) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class
(12) persister (optional): Specifies a custom IClassPersister.
(13) batch-size (optional, defaults to 1) specify a "batch size" for fetching instances of this class by identifier.
(14) optimistic-lock (optional, defaults to version): Determines the optimistic locking strategy.
(15) lazy (optional): Setting lazy="true" is a shortcut equalivalent to specifying the name of the class itself

as the proxy interface.

It is perfectly acceptable for the named persistent class to be an interface. You would then declare implement-
ing classes of that interface using the <subclass> element. You may persist any inner class. You should specify
the class name using the standard form ie. Eg.Foo+Bar, Eg. Due to an HQL parser limitation inner classes can
not be used in queries in NHibernate 1.0.

Immutable classes, mutable="false", may not be updated or deleted by the application. This allows NHibern-
ate to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. NHibernate will ini-
tially return proxies which implement the named interface. The actual persistent object will be loaded when a
method of the proxy is invoked. See "Proxies for Lazy Initialization" below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only be queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <class> declaration as a <subclass> or <joined-subclass>. For most purposes the default,
polymorphism="implicit", is appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this allows a "lightweight" class that contains a subset of the table columns).

The persister attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of NHibernate.Persister.EntityPersister or you might even provide a com-
pletely new implementation of the interface NHibernate.Persister.IClassPersister that implements per-
sistence via, for example, stored procedure calls, serialization to flat files or LDAP. See NHibern-

ate.DomainModel.CustomPersister for a simple example (of "persistence" to a Hashtable).

Note that the dynamic-update and dynamic-insert settings are not inherited by subclasses and so may also be
specified on the <subclass> or <joined-subclass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judiciously.

Use of select-before-update will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily.

If you enable dynamic-update, you will have a choice of optimistic locking strategies:

• version check the version/timestamp columns

Basic O/R Mapping

NHibernate 1.0.2 25

• all check all columns

• dirty check the changed columns

• none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with NHibernate.
This is the optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made outside of the session (ie. when ISession.Update() is used). Keep in mind that a version or
timestamp property should never be null, no matter what unsaved-value strategy, or an instance will be detec-
ted as transient.

5.1.4. id

Mapped classes must declare the primary key column of the database table. Most classes will also have a prop-
erty holding the unique identifier of an instance. The <id> element defines the mapping from that property to
the primary key column.

<id
name="PropertyName" (1)
type="typename" (2)
column="column_name" (3)
unsaved-value="any|none|null|id_value" (4)
access="field|property|nosetter|ClassName(5)">

<generator class="generatorClass"/>
</id>

(1) name (optional): The name of the identifier property.
(2) type (optional): A name that indicates the NHibernate type.
(3) column (optional - defaults to the property name): The name of the primary key column.
(4) unsaved-value (optional - defaults to a "sensible" value): An identifier property value that indicates that

an instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in a previous session.

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

If the name attribute is missing, it is assumed that the class has no identifier property.

The unsaved-value attribute is almost never needed in NHibernate 1.0.

There is an alternative <composite-id> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

5.1.4.1. generator

The required <generator> child element names a .NET class used to generate unique identifiers for instances
of the persistent class. If any parameters are required to configure or initialize the generator instance, they are
passed using the <param> element.

<id name="Id" type="Int64" column="uid" unsaved-value="0">
<generator class="NHibernate.Id.TableHiLoGenerator">

<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>

</generator>
</id>

Basic O/R Mapping

NHibernate 1.0.2 26

All generators implement the interface NHibernate.Id.IIdentifierGenerator. This is a very simple inter-
face; some applications may choose to provide their own specialized implementations. However, NHibernate
provides a range of built-in implementations. There are shortcut names for the built-in generators:

increment

generates identifiers of type Int64, Int16 or Int32 that are unique only when no other process is inserting
data into the same table. Do not use in a cluster.

identity

supports identity columns in DB2, MySQL, MS SQL Server and Sybase. The identifier returned by the
database is converted to the property type using Convert.ChangeType. Any integral property type is thus
supported.

sequence

uses a sequence in DB2, PostgreSQL, Oracle or a generator in Firebird. The identifier returned by the data-
base is converted to the property type using Convert.ChangeType. Any integral property type is thus sup-
ported.

hilo

uses a hi/lo algorithm to efficiently generate identifiers of type Int16, Int32 or Int64, given a table and
column (by default hibernate_unique_key and next_hi respectively) as a source of hi values. The hi/lo al-
gorithm generates identifiers that are unique only for a particular database. Do not use this generator with a
user-supplied connection.

seqhilo

uses a hi/lo algorithm to efficiently generate identifiers of type Int16, Int32 or Int64, given a named data-
base sequence.

uuid.hex

uses System.Guid and its ToString(string format) method to generate identifiers of type string. The
length of the string returned depends on the configured format.

uuid.string

uses a new System.Guid to create a byte[] that is converted to a string.

guid

uses a new System.Guid as the identifier.

guid.comb

uses the algorithm to generate a new System.Guid described by Jimmy Nilsson in the article ht-
tp://www.informit.com/articles/article.asp?p=25862.

native

picks identity, sequence or hilo depending upon the capabilities of the underlying database.

assigned

lets the application to assign an identifier to the object before Save() is called.

foreign

uses the identifier of another associated object. Usually used in conjunction with a <one-to-one> primary
key association.

5.1.4.2. Hi/Lo Algorithm

Basic O/R Mapping

NHibernate 1.0.2 27

The hilo and seqhilo generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-
proach to identifier generation. The first implementation requires a "special" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="Id" type="Int64" column="cat_id">
<generator class="hilo">

<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>

</generator>
</id>

<id name="Id" type="Int64" column="cat_id">
<generator class="seqhilo">

<param name="sequence">hi_value</param>
<param name="max_lo">100</param>

</generator>
</id>

Unfortunately, you can't use hilo when supplying your own IDbConnection to NHibernate. NHibernate must
be able to fetch the "hi" value in a new transaction.

5.1.4.3. UUID Hex Algorithm

<id name="Id" type="String" column="cat_id">
<generator class="uuid.hex">

<param name="format">format_value</param>
<param name="seperator">seperator_value</param>

</generator>
</id>

The UUID is generated by calling Guid.NewGuid().ToString(format). The valid values for format are de-
scribed in the MSDN documentation. The default seperator is - and should rarely be modified. The format

determines if the configured seperator can replace the default seperator used by the format.

5.1.4.4. UUID String Algorithm

The UUID is generated by calling Guid.NewGuid().ToByteArray() and then converting the byte[] into a
char[]. The char[] is returned as a String consisting of 16 characters.

5.1.4.5. GUID Algorithms

The guid identifier is generated by calling Guid.NewGuid(). To address some of the performance concerns with
using Guids as primary keys, foreign keys, and as part of indexes with MS SQL the guid.comb can be used.
The benefit of using the guid.comb with other databases that support GUIDs has not been measured.

5.1.4.6. Identity columns and Sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may use identity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence style key generation. Both these strategies require two SQL queries to insert a new object.

<id name="Id" type="Int64" column="uid">
<generator class="sequence">

<param name="sequence">uid_sequence</param>
</generator>

</id>

Basic O/R Mapping

NHibernate 1.0.2 28

<id name="Id" type="Int64" column="uid" unsaved-value="0">
<generator class="identity"/>

</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo

strategies, dependent upon the capabilities of the underlying database.

5.1.4.7. Assigned Identifiers

If you want the application to assign identifiers (as opposed to having NHibernate generate them), you may use
the assigned generator. This special generator will use the identifier value already assigned to the object's iden-
tifier property. Be very careful when using this feature to assign keys with business meaning (almost always a
terrible design decision).

Due to its inherent nature, entities that use this generator cannot be saved via the ISession's SaveOrUpdate()
method. Instead you have to explicitly specify to NHibernate if the object should be saved or updated by calling
either the Save() or Update() method of the ISession.

5.1.5. composite-id

<composite-id
name="PropertyName"
class="ClassName"
unsaved-value="any|none"
access="field|property|nosetter|ClassName">

<key-property name="PropertyName" type="typename" column="column_name"/>
<key-many-to-one name="PropertyName class="ClassName" column="column_name"/>
......

</composite-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<composite-id> element accepts <key-property> property mappings and <key-many-to-one> mappings as
child elements.

<composite-id>
<key-property name="MedicareNumber"/>
<key-property name="Dependent"/>

</composite-id>

Your persistent class must override Equals() and GetHashCode() to implement composite identifier equality. It
must also be Serializable.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. You must instantiate an instance of the persistent class it-
self and populate its identifier properties before you can load() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
seperate class in Section 7.4, “Components as composite identifiers”. The attributes described below apply only
to this alternative approach:

• name (optional, required for this approach): A property of component type that holds the composite identifi-
er (see next section).

• access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

• class (optional - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

Basic O/R Mapping

NHibernate 1.0.2 29

5.1.6. discriminator

The <discriminator> element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: String, Char, Int32, Byte, Short, Boolean, YesNo, TrueFalse.

<discriminator
column="discriminator_column" (1)
type="discriminator_type" (2)
force="true|false" (3)
insert="true|false" (4)

/>

(1) column (optional - defaults to class) the name of the discriminator column.
(2) type (optional - defaults to String) a name that indicates the NHibernate type
(3) force (optional - defaults to false) "force" NHibernate to specify allowed discriminator values even

when retrieving all instances of the root class.
(4) insert (optional - defaults to true) set this to false if your discriminator column is also part of a mapped

composite identifier.

Actual values of the discriminator column are specified by the discriminator-value attribute of the <class>

and <subclass> elements.

The force attribute is (only) useful if the table contains rows with "extra" discriminator values that are not
mapped to a persistent class. This will not usually be the case.

5.1.7. version (optional)

The <version> element is optional and indicates that the table contains versioned data. This is particularly use-
ful if you plan to use long transactions (see below).

<version
column="version_column" (1)
name="PropertyName" (2)
type="typename" (3)
access="field|property|nosetter|ClassName" (4)
unsaved-value="null|negative|undefined|value" (5)

/>

(1) column (optional - defaults to the property name): The name of the column holding the version number.
(2) name: The name of a property of the persistent class.
(3) type (optional - defaults to Int32): The type of the version number.
(4) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.
(5) unsaved-value (optional - defaults to a "sensible" value): A version property value that indicates that an

instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in a previous session. (undefined specifies that the identifier property value should be used.)

Version numbers may be of type Int64, Int32, Int16, Ticks, Timestamp, or TimeSpan.

5.1.8. timestamp (optional)

The optional <timestamp> element indicates that the table contains timestamped data. This is intended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,

Basic O/R Mapping

NHibernate 1.0.2 30

sometimes the application might use the timestamps in other ways.

<timestamp
column="timestamp_column" (1)
name="PropertyName" (2)
access="field|property|nosetter|Clas(3)sName"
unsaved-value="null|undefined|value"(4)

/>

(1) column (optional - defaults to the property name): The name of a column holding the timestamp.
(2) name: The name of a property of .NET type DateTime of the persistent class.
(3) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.
(4) unsaved-value (optional - defaults to null): A timestamp property value that indicates that an instance is

newly instantiated (unsaved), distinguishing it from transient instances that were saved or loaded in a pre-
vious session. (undefined specifies that the identifier property value should be used.)

Note that <timestamp> is equivalent to <version type="timestamp">.

5.1.9. property

The <property> element declares a persistent property of the class.

<property
name="propertyName" (1)
column="column_name" (2)
type="typename" (3)
update="true|false" (4)
insert="true|false" (4)
formula="arbitrary SQL expression" (5)
access="field|property|ClassName" (6)

/>

(1) name: the name of the property of your class.
(2) column (optional - defaults to the property name): the name of the mapped database table column.
(3) type (optional): a name that indicates the NHibernate type.
(4) update, insert (optional - defaults to true) : specifies that the mapped columns should be included in

SQL UPDATE and/or INSERT statements. Setting both to false allows a pure "derived" property whose
value is initialized from some other property that maps to the same column(s) or by a trigger or other ap-
plication.

(5) formula (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

(6) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

typename could be:

1. The name of a NHibernate basic type (eg. Int32, String, Char, DateTime, Timestamp, Single,

Byte[], Object, ...).
2. The name of a .NET type with a default basic type (eg. System.Int16, System.Single, System.Char,

System.String, System.DateTime, System.Byte[], ...).
3. The name of an enumeration type (eg. Eg.Color, Eg).
4. The name of a serializable .NET type.
5. The class name of a custom type (eg. Illflow.Type.MyCustomType).

Note that you have to specify full assembly-qualified names for all except basic NHibernate types (unless you
set assembly and/or namespace attributes of the <hibernate-mapping> element).

Basic O/R Mapping

NHibernate 1.0.2 31

If you do not specify a type, NHibernate will use reflection upon the named property to take a guess at the cor-
rect NHibernate type. NHibernate will try to interpret the name of the return class of the property getter using
rules 2, 3, 4 in that order. However, this is not always enough. In certain cases you will still need the type at-
tribute. (For example, to distinguish between NHibernate.DateTime and NHibernate.Timestamp, or to specify
a custom type.)

The access attribute lets you control how NHibernate will access the value of the property at runtime. The
value of the access attribute should be text formatted as access-strategy.naming-strategy. The
.naming-stragey is not always required.

Table 5.1. Access Strategies

Access Strategy Name Description

property
The default implementation. NHibernate uses the get/
set accessors of the property. No naming strategy
should be used with this access strategy because the
value of the name attribute is the name of the prop-
erty.

field
NHibernate will access the field directly. NHibernate
uses the value of the name attribute as the name of the
field. This can be used when a property's getter and
setter contain extra actions that you don't want to oc-
cur when NHibernate is populating or reading the ob-
ject. If you want the name of the property and not the
field to be what the consumers of your API use with
HQL, then a naming strategy is needed.

nosetter
NHibernate will access the field directly when setting
the value and will use the Property when getting the
value. This can be used when a property only exposes
a get accessor because the consumers of your API
can't change the value directly. A naming strategy is
required because NHibernate uses the value of the
name attribute as the property name and needs to be
told what the name of the field is.

ClassName
If NHibernate's built in access strategies are not what
is needed for your situation then you can build your
own by implementing the interface NHibern-

ate.Property.IPropertyAccessor. The value of the
access attribute should be an assembly-qualified
name that can be loaded with Activat-

or.CreateInstance(string assemblyQualified-

Name).

Table 5.2. Naming Strategies

Basic O/R Mapping

NHibernate 1.0.2 32

Naming Strategy Name Description

camelcase
The name attribute is converted to camel case to find
the field. <property name="Foo" ... > uses the
field foo.

camelcase-underscore
The name attribute is converted to camel case and pre-
fixed with an underscore to find the field. <property
name="Foo" ... > uses the field _foo.

lowercase
The name attribute is converted to lower case to find
the Field. <property name="FooBar" ... > uses the
field foobar.

lowercase-underscore
The name attribute is converted to lower case and pre-
fixed with an underscore to find the Field. <property
name="FooBar" ... > uses the field _foobar.

pascalcase-underscore
The name attribute is prefixed with an underscore to
find the field. <property name="Foo" ... > uses the
field _Foo.

pascalcase-m-underscore
The name attribute is prefixed with the character m and
an underscore to find the field. <property

name="Foo" ... > uses the field m_Foo.

5.1.10. many-to-one

An ordinary association to another persistent class is declared using a many-to-one element. The relational
model is a many-to-one association. (It's really just an object reference.)

<many-to-one
name="PropertyName" (1)
column="column_name" (2)
class="ClassName" (3)
cascade="all|none|save-update|delete" (4)
fetch="join|select" (5)
update="true|false" (6)
insert="true|false" (6)
property-ref="PropertyNameFromAssociatedClass" (7)
access="field|property|nosetter|ClassName" (8)
unique="true|false" (9)

/>

(1) name: The name of the property.
(2) column (optional): The name of the column.
(3) class (optional - defaults to the property type determined by reflection): The name of the associated

class.
(4) cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-

ated object.
(5) fetch (optional - defaults to select): Chooses between outer-join fetching or sequential select fetching.
(6) update, insert (optional - defaults to true) specifies that the mapped columns should be included in

Basic O/R Mapping

NHibernate 1.0.2 33

SQL UPDATE and/or INSERT statements. Setting both to false allows a pure "derived" association whose
value is initialized from some other property that maps to the same colum(s) or by a trigger or other ap-
plication.

(7) property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated class is used.

(8) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(9) unique (optional): Enable the DDL generation of a unique constraint for the foreign-key column.

The cascade attribute permits the following values: all, save-update, delete, none. Setting a value other than
none will propagate certain operations to the associated (child) object. See "Lifecycle Objects" below.

The fetch attribute accepts two different values:

• join Fetch the association using an outer join
• select Fetch the association using a separate query

A typical many-to-one declaration looks as simple as

<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

The property-ref attribute should only be used for mapping legacy data where a foreign key refers to a unique
key of the associated table other than the primary key. This is an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The unique attribute controls
NHibernate's DDL generation with the SchemaExport tool.)

<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

Then the mapping for OrderItem might use:

<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>

This is certainly not encouraged, however.

5.1.11. one-to-one

A one-to-one association to another persistent class is declared using a one-to-one element.

<one-to-one
name="PropertyName" (1)
class="ClassName" (2)
cascade="all|none|save-update|delete" (3)
constrained="true|false" (4)
fetch="join|select" (5)
property-ref="PropertyNameFromAssociatedClass" (6)
access="field|property|nosetter|ClassName" (7)

/>

(1) name: The name of the property.
(2) class (optional - defaults to the property type determined by reflection): The name of the associated

class.
(3) cascade (optional) specifies which operations should be cascaded from the parent object to the associated

object.
(4) constrained (optional) specifies that a foreign key constraint on the primary key of the mapped table ref-

erences the table of the associated class. This option affects the order in which Save() and Delete() are
cascaded (and is also used by the schema export tool).

Basic O/R Mapping

NHibernate 1.0.2 34

(5) fetch (optional - defaults to select): Chooses between outer-join fetching or sequential select fetching.
(6) property-ref: (optional) The name of a property of the associated class that is joined to the primary key

of this class. If not specified, the primary key of the associated class is used.
(7) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.

There are two varieties of one-to-one association:

• primary key associations

• unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For a primary key association, add the following mappings to Employee and Person, respectively.

<one-to-one name="Person" class="Person"/>

<one-to-one name="Employee" class="Employee" constrained="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOYEE tables are equal.
We use a special NHibernate identifier generation strategy called foreign:

<class name="Person" table="PERSON">
<id name="Id" column="PERSON_ID">

<generator class="foreign">
<param name="property">Employee</param>

</generator>
</id>
...
<one-to-one name="Employee"

class="Employee"
constrained="true"/>

</class>

A newly saved instance of Person is then assigned the same primar key value as the Employee instance refered
with the Employee property of that Person.

Alternatively, a foreign key with a unique constraint, from Employee to Person, may be expressed as:

<many-to-one name="Person" class="Person" column="PERSON_ID" unique="true"/>

And this association may be made bidirectional by adding the following to the Person mapping:

<one-to-one name="Employee" class="Employee" property-ref="Person"/>

5.1.12. component, dynamic-component

The <component> element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See "Components" below.

<component
name="PropertyName" (1)
class="ClassName" (2)
insert="true|false" (3)

Basic O/R Mapping

NHibernate 1.0.2 35

upate="true|false" (4)
access="field|property|nosetter|Clas(5)sName">

<property/>
<many-to-one />
........

</component>

(1) name: The name of the property.
(2) class (optional - defaults to the property type determined by reflection): The name of the component

(child) class.
(3) insert: Do the mapped columns appear in SQL INSERTs?
(4) update: Do the mapped columns appear in SQL UPDATEs?
(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.

The child <property> tags map properties of the child class to table columns.

The <component> element allows a <parent> subelement that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynamic-component> element allows an IDictionary to be mapped as a component, where the property
names refer to keys of the dictionary.

5.1.13. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
(recommended) table-per-class-hierarchy mapping strategy, the <subclass> declaration is used.

<subclass
name="ClassName" (1)
discriminator-value="discriminator_value" (2)
proxy="ProxyInterface" (3)
lazy="true|false" (4)
dynamic-update="true|false"
dynamic-insert="true|false">

<property />
.....

</subclass>

(1) name: The fully qualified .NET class name of the subclass, including its assembly name.
(2) discriminator-value (optional - defaults to the class name): A value that distiguishes individual sub-

classes.
(3) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(4) lazy (optional): Setting lazy="true" is a shortcut equalivalent to specifying the name of the class itself

as the proxy interface.

Each subclass should declare its own persistent properties and subclasses. <version> and <id> properties are
assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique discriminator-

value. If none is specified, the fully qualified .NET class name is used.

5.1.14. joined-subclass

Alternatively, a subclass that is persisted to its own table (table-per-subclass mapping strategy) is declared us-
ing a <joined-subclass> element.

Basic O/R Mapping

NHibernate 1.0.2 36

<joined-subclass
name="ClassName" (1)
proxy="ProxyInterface" (2)
lazy="true|false" (3)
dynamic-update="true|false"
dynamic-insert="true|false">

<key >

<property />
.....

</joined-subclass>

(1) name: The fully qualified class name of the subclass.
(2) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(3) lazy (optional): Setting lazy="true" is a shortcut equalivalent to specifying the name of the class itself

as the proxy interface.

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0" assembly="Eg"

namespace="Eg">

<class name="Cat" table="CATS">
<id name="Id" column="uid" type="Int64">

<generator class="hilo"/>
</id>
<property name="BirthDate" type="Date"/>
<property name="Color" not-null="true"/>
<property name="Sex" not-null="true"/>
<property name="Weight"/>
<many-to-one name="Mate"/>
<set name="Kittens">

<key column="MOTHER"/>
<one-to-many class="Cat"/>

</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">

<key column="CAT"/>
<property name="Name" type="String"/>

</joined-subclass>
</class>

<class name="Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

5.1.15. map, set, list, bag

Collections are discussed later.

5.1.16. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified name in NHibernate queries. Classes may be "imported" explicitly, rather than relying upon auto-

import="true". You may even import classes and interfaces that are not explicitly mapped.

<import class="System.Object" rename="Universe"/>

Basic O/R Mapping

NHibernate 1.0.2 37

<import
class="ClassName" (1)
rename="ShortName" (2)

/>

(1) class: The fully qualified class name of any .NET class, including its assembly name.
(2) rename (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.

5.2. NHibernate Types

5.2.1. Entities and values

To understand the behaviour of various .NET language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
Java model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). This is different from the
ODMG model of object persistence by reachability - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may also be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are prim-
itives, collections, components and certain immutable objects. Unlike entities, values (in particular collections
and components) are persisted and deleted by reachability. Since value objects (and primitives) are persisted
and deleted along with their containing entity they may not be independently versioned. Values have no inde-
pendent identity, so they cannot be shared by two entities or collections.

All NHibernate types except collections support null semantics if the .NET type is nullable (i.e. not derived
from System.ValueType).

Up until now, we've been using the term "persistent class" to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics.

5.2.2. Basic value types

The basic types may be roughly categorized into three groups - System.ValueType types, System.Object

types, and System.Object types for large objects. Just like the .NET Types, columns for System.ValueType
types can not store null values and System.Object types can store null values.

Table 5.3. System.ValueType Mapping Types

NHibernate Type .NET Type Database Type Remarks

AnsiChar System.Char Db-

Type.AnsiStringFixedL

ength - 1 char

Boolean System.Boolean DbType.Boolean Default when no type at-
tribute specified.

Basic O/R Mapping

NHibernate 1.0.2 38

NHibernate Type .NET Type Database Type Remarks

Byte System.Byte DbType.Byte Default when no type at-
tribute specified.

Char System.Char Db-

Type.StringFixedLengt

h - 1 char

Default when no type at-
tribute specified.

DateTime System.DateTime DbType.DateTime - ig-
nores the milliseconds

Default when no type at-
tribute specified.

Decimal System.Decimal DbType.Decimal Default when no type at-
tribute specified.

Double System.Double DbType.Double Default when no type at-
tribute specified.

Guid System.Guid DbType.Guid Default when no type at-
tribute specified.

Int16 System.Int16 DbType.Int16 Default when no type at-
tribute specified.

Int32 System.Int32 DbType.Int32 Default when no type at-
tribute specified.

Int64 System.Int64 DbType.Int64 Default when no type at-
tribute specified.

PersistentEnum A System.Enum The DbType for the under-
lying value.

Do not specify
type="PersistentEnum"

in the mapping. Instead
specify the Assembly
Qualified Name of the
Enum or let NHibernate
use Reflection to "guess"
the Type. The Underly-
ingType of the Enum is
used to determine the cor-
rect DbType.

Single System.Single DbType.Single Default when no type at-
tribute specified.

Ticks System.DateTime DbType.Int64 type="Ticks" must be
specified.

TimeSpan System.TimeSpan DbType.Int64 Default when no type at-
tribute specified.

Timestamp System.DateTime DbType.DateTime - as
specific as database sup-
ports.

type="Timestamp" must
be specified.

TrueFalse System.Boolean Db-

Type.AnsiStringFixedL

ength - 1 char either 'T'
or 'F'

type="TrueFalse" must
be specified.

Basic O/R Mapping

NHibernate 1.0.2 39

NHibernate Type .NET Type Database Type Remarks

YesNo System.Boolean Db-

Type.AnsiStringFixedL

ength - 1 char either 'Y'
or 'N'

type="YesNo" must be
specified.

Table 5.4. System.Object Mapping Types

NHibernate Type .NET Type Database Type Remarks

AnsiString System.String DbType.AnsiString type="AnsiString" must
be specified.

CultureInfo Sys-

tem.Globalization.Cul

tureInfo

DbType.String - 5 chars
for culture

Default when no type at-
tribute specified.

Binary System.Byte[] DbType.Binary Default when no type at-
tribute specified.

Type System.Type DbType.String holding
Assembly Qualified
Name.

Default when no type at-
tribute specified.

String System.String DbType.String Default when no type at-
tribute specified.

Table 5.5. Large Object Mapping Types

NHibernate Type .NET Type Database Type Remarks

StringClob System.String DbType.String type="StringClob" must
be specified. Entire field
is read into memory.

BinaryBlob System.Byte[] DbType.Binary type="BinaryBlob" must
be specified. Entire field
is read into memory.

Serializable Any System.Object that
is marked with Serializ-
ableAttribute.

DbType.Binary type="Serializable"

should be specified. This
is the fallback type if no
NHibernate Type can be
found for the Property.

NHibernate supports some additional type names for compatibility with Hibernate (useful for those coming
over from Hibernate or using some of the tools to generate hbm.xml files). A type="integer" or type="int"
will map to an Int32 NHibernate type, type="short" to an Int16 NHibernateType. To see all of the conver-
sions you can view the source of static constructor of the class NHibernate.Type.TypeFactory.

5.2.3. Custom value types

Basic O/R Mapping

NHibernate 1.0.2 40

It is relatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of type Int64 to VARCHAR columns. NHibernate does not provide a built-in type for this. But custom types
are not limited to mapping a property (or collection element) to a single table column. So, for example, you
might have a property Name { get; set; } of type String that is persisted to the columns FIRST_NAME, INI-
TIAL, SURNAME.

To implement a custom type, implement either NHibernate.IUserType or NHibernate.ICompositeUserType

and declare properties using the fully qualified name of the type. Check out NHibern-

ate.DomainModel.DoubleStringType to see the kind of things that are possible.

<property name="TwoStrings" type="NHibernate.DomainModel.DoubleStringType, NHibernate.DomainModel">
<column name="first_string"/>
<column name="second_string"/>

</property>

Notice the use of <column> tags to map a property to multiple columns.

Even though NHibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a MonetaryAmount class is a good candidate for an
ICompositeUserType, even though it could easily be mapped as a component. One motivation for this is ab-
straction. With a custom type, your mapping documents would be future-proofed against possible changes in
your way of representing monetary values.

5.2.4. Any type mappings

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It is impossible to specify a
foreign key constraint for this kind of association, so this is most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very special cases (eg. audit logs, user session
data, etc).

<any name="AnyEntity" id-type="Int64" meta-type="Eg.Custom.Class2TablenameType">
<column name="table_name"/>
<column name="id"/>

</any>

The meta-type attribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by id-type. If the meta-type returns instances
of System.Type, nothing else is required. On the other hand, if it is a basic type like String or Char, you must
specify the mapping from values to classes.

<any name="AnyEntity" id-type="Int64" meta-type="String">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>

</any>

<any
name="PropertyName" (1)
id-type="idtypename" (2)
meta-type="metatypename" (3)
cascade="none|all|save-update" (4)
access="field|property|nosetter|ClassName(5)"

Basic O/R Mapping

NHibernate 1.0.2 41

>
<meta-value ... />
<meta-value ... />
.....
<column />
<column />
.....

</any>

(1) name: the property name.
(2) id-type: the identifier type.
(3) meta-type (optional - defaults to Type): a type that maps System.Type to a single database column or, al-

ternatively, a type that is allowed for a discriminator mapping.
(4) cascade (optional - defaults to none): the cascade style.
(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.

5.3. SQL quoted identifiers

You may force NHibernate to quote an identifier in the generated SQL by enclosing the table or column name
in backticks in the mapping document. NHibernate will use the correct quotation style for the SQL Dialect

(usually double quotes, but brackets for SQL Server and backticks for MySQL).

<class name="LineItem" table="`Line Item`">
<id name="Id" column="`Item Id`"/><generator class="assigned"/></id>
<property name="ItemNumber" column="`Item #`"/>
...

</class>

5.4. Modular mapping files

It is possible to define subclass and joined-subclass mappings in seperate mapping documents, directly be-
neath hibernate-mapping. This allows you to extend a class hierachy just by adding a new mapping file. You
must specify an extends attribute in the subclass mapping, naming a previously mapped superclass. Use of this
feature makes the ordering of the mapping documents important!

<hibernate-mapping>
<subclass name="Eg.Subclass.DomesticCat, Eg"

extends="Eg.Cat, Eg" discriminator-value="D">
<property name="name" type="string"/>

</subclass>
</hibernate-mapping>

Basic O/R Mapping

NHibernate 1.0.2 42

Chapter 6. Collection Mapping

6.1. Persistent Collections

This section does not contain much example C# code. We assume you already know how to use .NET collec-
tions framework. If so, there's not really anything more to know - with a single caveat, you may use .NET col-
lections the same way you always have.

NHibernate can persist instances of System.Collections.IDictionary, Iesi.Collections.ISet, Sys-

tem.Collections.IList, and any array of persistent entities or values. Properties of type Sys-

tem.Collections.ICollection or System.Collections.IList may also be persisted with "bag" semantics.

Now the caveat: persistent collections do not retain any extra semantics added by the class implementing the
collection interface (eg. iteration order of a ListDictionary). The persistent collections actually behave like
Hashtable, HashedSet and ArrayList respectively (with the exception of SortedList and SortedSet which do
retain the sort order). Furthermore, the type of a property holding a collection must be the interface type (ie.
IDictionary, ISet or IList; never Hashtable, SortedSet or ArrayList). This restriction exists because, when
you're not looking, NHibernate sneakily replaces your instances of IDictionary, ISet and IList with in-
stances of its own persistent implementations of IDictionary, ISet or IList. (So also be careful when using
== on your collections.)

Cat cat = new DomesticCat();
Cat kitten = new DomesticCat();
....
ISet kittens = new HashedSet();
kittens.Add(kitten);
cat.Kittens = kittens;
session.Save(cat);
kittens = cat.Kittens; //Okay, kittens collection is a Set
HashedSet hs = (HashedSet) cat.Kittens; //Error!

Collections obey the usual rules for value types: no shared references, created and deleted along with contain-
ing entity. Due to the underlying relational model, they do not support null value semantics; NHibernate does
not distinguish between a null collection reference and an empty collection.

Collections are automatically persisted when referenced by a persistent object and automatically deleted when
unreferenced. If a collection is passed from one persistent object to another, its elements might be moved from
one table to another. You shouldn't have to worry much about any of this. Just use NHibernate's collections the
same way you use ordinary .NET collections, but make sure you understand the semantics of bidirectional asso-
ciations (discussed later) before using them.

Collection instances are distinguished in the database by a foreign key to the owning entity. This foreign key is
referred to as the collection key . The collection key is mapped by the <key> element.

Collections may contain almost any other NHibernate type, including all basic types, custom types, entity types
and components. This is an important definition: An object in a collection can either be handled with "pass by
value" semantics (it therefore fully depends on the collection owner) or it can be a reference to another entity
with an own lifecycle. Collections may not contain other collections. The contained type is referred to as the
collection element type. Collection elements are mapped by <element>, <composite-element>,
<one-to-many>, <many-to-many> or <many-to-any>. The first two map elements with value semantics, the oth-
er three are used to map entity associations.

All collection types except ISet and bag have an index column - a column that maps to an array or IList index

NHibernate 1.0.2 43

or IDictionary key. The index of an IDictionary may be of any basic type, an entity type or even a composite
type (it may not be a collection). The index of an array or list is always of type Int32. Indexes are mapped us-
ing <index>, <index-many-to-many>, <composite-index> or <index-many-to-any>.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations translate to database tables.

6.2. Mapping a Collection

Collections are declared by the <set>, <list>, <map>, <bag>, <array> and <primitive-array> elements.
<map> is representative:

<map
name="propertyName" (1)
table="table_name" (2)
schema="schema_name" (3)
lazy="true|false" (4)
inverse="true|false" (5)
cascade="all|none|save-update|delete|all-delete-orphan" (6)
sort="unsorted|natural|comparatorClass" (7)
order-by="column_name asc|desc" (8)
where="arbitrary sql where condition" (9)
fetch="select|join" (10)
batch-size="N" (11)
access="field|property|ClassName" (12)

>

<key />
<index />
<element />

</map>

(1) name the collection property name
(2) table (optional - defaults to property name) the name of the collection table (not used for one-to-many

associations)
(3) schema (optional) the name of a table schema to override the schema declared on the root element
(4) lazy (optional - defaults to false) enable lazy initialization (not used for arrays)
(5) inverse (optional - defaults to false) mark this collection as the "inverse" end of a bidirectional associ-

ation
(6) cascade (optional - defaults to none) enable operations to cascade to child entities
(7) sort (optional) specify a sorted collection with natural sort order, or a given comparator class
(8) order-by (optional) specify a table column (or columns) that define the iteration order of the IDiction-

ary, ISet or bag, together with an optional asc or desc
(9) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the

collection (useful if the collection should contain only a subset of the available data)
(10) fetch (optional) Choose between outer-join fetching and fetching by sequential select.
(11) batch-size (optional, defaults to 1) specify a "batch size" for lazily fetching instances of this collection.
(12) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.

The mapping of an IList or array requires a seperate table column holding the array or list index (the i in
foo[i]). If your relational model doesn't have an index column, e.g. if you're working with legacy data, use an
unordered ISet instead. This seems to put people off who assume that IList should just be a more convenient
way of accessing an unordered collection. NHibernate collections strictly obey the actual semantics attached to
the ISet, IList and IDictionary interfaces. IList elements don't just spontaneously rearrange themselves!

Collection Mapping

NHibernate 1.0.2 44

On the other hand, people who planned to use the IList to emulate bag semantics have a legitimate grievance
here. A bag is an unordered, unindexed collection which may contain the same element multiple times. The
.NET collections framework lacks an IBag interface, hence you have to emulate it with an IList. NHibernate
lets you map properties of type IList or ICollection with the <bag> element. Note that bag semantics are not
really part of the ICollection contract and they actually conflict with the semantics of the IList contract
(however, you can sort the bag arbitrarily, discussed later in this chapter).

Note: Large NHibernate bags mapped with inverse="false" are inefficient and should be avoided; NHibern-
ate can't create, delete or update rows individually, because there is no key that may be used to identify an indi-
vidual row.

6.3. Collections of Values and Many-To-Many Associations

A collection table is required for any collection of values and any collection of references to other entities
mapped as a many-to-many association (the natural semantics for a .NET collection). The table requires
(foreign) key column(s), element column(s) and possibly index column(s).

The foreign key from the collection table to the table of the owning class is declared using a <key> element.

<key column="column_name"/>

(1) column (required): The name of the foreign key column.

For indexed collections like maps and lists, we require an <index> element. For lists, this column contains se-
quential integers numbered from zero. Make sure that your index really starts from zero if you have to deal with
legacy data. For maps, the column may contain any values of any NHibernate type.

<index
column="column_name" (1)
type="typename" (2)

/>

(1) column (required): The name of the column holding the collection index values.
(2) type (optional, defaults to Int32): The type of the collection index.

Alternatively, a map may be indexed by objects of entity type. We use the <index-many-to-many> element.

<index-many-to-many
column="column_name" (1)
class="ClassName" (2)

/>

(1) column (required): The name of the foreign key column for the collection index values.
(2) class (required): The entity class used as the collection index.

For a collection of values, we use the <element> tag.

<element
column="column_name" (1)
type="typename" (2)

/>

(1) column (required): The name of the column holding the collection element values.
(2) type (required): The type of the collection element.

Collection Mapping

NHibernate 1.0.2 45

A collection of entities with its own table corresponds to the relational notion of many-to-many association. A
many to many association is the most natural mapping of a .NET collection but is not usually the best relational
model.

<many-to-many
column="column_name" (1)
class="ClassName" (2)
fetch="join|select" (3)

/>

(1) column (required): The name of the element foreign key column.
(2) class (required): The name of the associated class.
(3) fetch (optional, defaults to join): enables outer-join or sequential select fetching for this association.

This is a special case; for full eager fetching (in a single SELECT) of an entity and its many-to-many rela-
tionships to other entities, you would enable join fetching not only of the collection itself, but also with
this attribute on the <many-to-many> nested element.

Some examples, first, a set of strings:

<set name="Names" table="NAMES">
<key column="GROUPID"/>
<element column="NAME" type="String"/>

</set>

A bag containing integers (with an iteration order determined by the order-by attribute):

<bag name="Sizes" table="SIZES" order-by="SIZE ASC">
<key column="OWNER"/>
<element column="SIZE" type="Int32"/>

</bag>

An array of entities - in this case, a many to many association (note that the entities are lifecycle objects, cas-
cade="all"):

<array name="Foos" table="BAR_FOOS" cascade="all">
<key column="BAR_ID"/>
<index column="I"/>
<many-to-many column="FOO_ID" class="Eg.Foo, Eg"/>

</array>

A map from string indices to dates:

<map name="Holidays" table="holidays" schema="dbo" order-by="hol_name asc">
<key column="id"/>
<index column="hol_name" type="String"/>
<element column="hol_date" type="Date"/>

</map>

A list of components (discussed in the next chapter):

<list name="CarComponents" table="car_components">
<key column="car_id"/>
<index column="posn"/>
<composite-element class="Eg.Car.CarComponent">

<property name="Price" type="float"/>
<property name="Type" type="Eg.Car.ComponentType, Eg"/>
<property name="SerialNumber" column="serial_no" type="String"/>

</composite-element>
</list>

Collection Mapping

NHibernate 1.0.2 46

6.4. One-To-Many Associations

A one to many association links the tables of two classes directly, with no intervening collection table. (This
implements a one-to-many relational model.) This relational model loses some of the semantics of .NET collec-
tions:

• No null values may be contained in a dictionary, set or list
• An instance of the contained entity class may not belong to more than one instance of the collection
• An instance of the contained entity class may not appear at more than one value of the collection index

An association from Foo to Bar requires the addition of a key column and possibly an index column to the table
of the contained entity class, Bar. These columns are mapped using the <key> and <index> elements described
above.

The <one-to-many> tag indicates a one to many association.

<one-to-many class="ClassName"/>

(1) class (required): The name of the associated class.

Example:

<set name="Bars">
<key column="foo_id"/>
<one-to-many class="Eg.Bar, Eg"/>

</set>

Notice that the <one-to-many> element does not need to declare any columns. Nor is it necessary to specify the
table name anywhere.

Very Important Note: If the <key> column of a <one-to-many> association is declared NOT NULL, NHibernate
may cause constraint violations when it creates or updates the association. To prevent this problem, you must
use a bidirectional association with the many valued end (the set or bag) marked as inverse="true". See the
discussion of bidirectional associations later in this chapter.

6.5. Lazy Initialization

Collections (other than arrays) may be lazily initialized, meaning they load their state from the database only
when the application needs to access it. Initialization happens transparently to the user so the application would
not normally need to worry about this (in fact, transparent lazy initialization is the main reason why NHibernate
needs its own collection implementations). However, if the application tries something like this:

s = sessions.OpenSession();
ITransaction tx = sessions.BeginTransaction();
User u = (User) s.Find("from User u where u.Name=?", userName, NHibernateUtil.String)[0];
IDictionary permissions = u.Permissions;
tx.Commit();
s.Close();

int accessLevel = (int) permissions["accounts"]; // Error!

It could be in for a nasty surprise. Since the permissions collection was not initialized when the ISession was
committed, the collection will never be able to load its state. The fix is to move the line that reads from the col-
lection to just before the commit. (There are other more advanced ways to solve this problem, however.)

Collection Mapping

NHibernate 1.0.2 47

Alternatively, use a non-lazy collection. Since lazy initialization can lead to bugs like that above, non-laziness
is the default. However, it is intended that lazy initialization be used for almost all collections, especially for
collections of entities (for reasons of efficiency).

Exceptions that occur while lazily initializing a collection are wrapped in a LazyInitializationException.

Declare a lazy collection using the optional lazy attribute:

<set name="Names" table="NAMES" lazy="true">
<key column="group_id"/>
<element column="NAME" type="String"/>

</set>

In some application architectures, particularly where the code that accesses data using NHibernate, and the
code that uses it are in different application layers, it can be a problem to ensure that the ISession is open when
a collection is initialized. There are two basic ways to deal with this issue:

• In a web-based application, an event handler can be used to close the ISession only at the very end of a
user request, once the rendering of the view is complete. Of course, this places heavy demands upon the
correctness of the exception handling of your application infrastructure. It is vitally important that the ISes-

sion is closed and the transaction ended before returning to the user, even when an exception occurs during
rendering of the view. The event handler has to be able to access the ISession for this approach. We re-
commend that the current ISession is stored in the HttpContext.Items collection (see chapter 1, Sec-
tion 1.4, “Playing with cats”, for an example implementation).

• In an application with a seperate business tier, the business logic must "prepare" all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
all the data already initialized to the presentation/web tier that is required for a particular use case. Usually,
the application calls NHibernateUtil.Initialize() for each collection that will be needed in the web tier
(this call must occur before the session is closed) or retrieves the collection eagerly using a NHibernate
query with a FETCH clause.

• You may also attach a previously loaded object to a new ISession with Update() or Lock() before access-
ing unitialized collections (or other proxies). NHibernate can not do this automatically, as it would intro-
duce ad hoc transaction semantics!

You can use the Filter() method of the NHibernate ISession API to get the size of a collection without initial-
izing it:

ICollection countColl = s.Filter(collection, "select count(*)");
IEnumerator countEn = countColl.GetEnumerator();
countEn.MoveNext();
int count = (int) countEn.Current;

Filter() or CreateFilter() are also used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection.

6.6. Sorted Collections

NHibernate supports collections implemented by System.Collections.SortedList and
Iesi.Collections.SortedSet. You must specify a comparer in the mapping file:

<set name="Aliases" table="person_aliases" sort="natural">
<key column="person"/>

Collection Mapping

NHibernate 1.0.2 48

<element column="name" type="String"/>
</set>

<map name="Holidays" sort="My.Custom.HolidayComparer, MyAssembly" lazy="true">
<key column="year_id"/>
<index column="hol_name" type="String"/>
<element column="hol_date" type="Date"/>

</map>

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing Sys-

tem.Collections.IComparer.

If you want the database itself to order the collection elements use the order-by attribute of set, bag or map

mappings. This performs the ordering in the SQL query, not in memory.

Setting the order-by attribute tells NHibernate to use ListDictionary or ListSet class internally for diction-
aries and sets, maintaining the order of the elements. Note that lookup operations on these collections are very
slow if they contain more than a few elements.

<set name="Aliases" table="person_aliases" order-by="name asc">
<key column="person"/>
<element column="name" type="String"/>

</set>

<map name="Holidays" order-by="hol_date, hol_name" lazy="true">
<key column="year_id"/>
<index column="hol_name" type="String"/>
<element column="hol_date type="Date"/>

</map>

Note that the value of the order-by attribute is an SQL ordering, not a HQL ordering!

Associations may even be sorted by some arbitrary criteria at runtime using a Filter().

sortedUsers = s.Filter(group.Users, "order by this.Name");

6.7. Using an <idbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections
of values that we've shown so far all map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, NHibernate provides a feature that allows you to map many to many associations and
collections of values to a table with a surrogate key.

The <idbag> element lets you map a List (or Collection) with bag semantics.

<idbag name="Lovers" table="LOVERS" lazy="true">
<collection-id column="ID" type="Int64">

<generator class="hilo"/>
</collection-id>
<key column="PERSON1"/>
<many-to-many column="PERSON2" class="Eg.Person" fetch="join"/>

</idbag>

As you can see, an <idbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. NHibernate does not provide any mechanism to discover the surrogate key
value of a particular row, however.

Collection Mapping

NHibernate 1.0.2 49

Note that the update performance of an <idbag> is much better than a regular <bag>! NHibernate can locate in-
dividual rows efficiently and update or delete them individually, just like a list, map or set.

In the current implementation, the native identifier generation strategy is not supported for <idbag> collection
identifiers.

6.8. Bidirectional Associations

A bidirectional association allows navigation from both "ends" of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

Please note that NHibernate does not support bidirectional one-to-many associations with an indexed collection
(list, map or array) as the "many" end, you have to use a set or bag mapping.

You may specify a bidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice). Here's an example of a
bidirectional many-to-many association from a class back to itself (each category can have many items and
each item can be in many categories):

<class name="NHibernate.Auction.Category, NHibernate.Auction">
<id name="Id" column="ID"/>
...
<bag name="Items" table="CATEGORY_ITEM" lazy="true">

<key column="CATEGORY_ID"/>
<many-to-many class="NHibernate.Auction.Item, NHibernate.Auction" column="ITEM_ID"/>

</bag>
</class>

<class name="NHibernate.Auction.Item, NHibernate.Auction">
<id name="id" column="ID"/>
...

<!-- inverse end -->
<bag name="categories" table="CATEGORY_ITEM" inverse="true" lazy="true">

<key column="ITEM_ID"/>
<many-to-many class="NHibernate.Auction.Category, NHibernate.Auction" column="CATEGORY_ID"/>

</bag>
</class>

Changes made only to the inverse end of the association are not persisted. This means that NHibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. This is easier to understand if you think about the .NET object model and how we create a many-to-many re-
lationship in C#:

category.Items.Add(item); // The category now "knows" about the relationship
item.Categories.Add(category); // The item now "knows" about the relationship

session.Update(item); // No effect, nothing will be saved!
session.Update(category); // The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database. We would get an unnec-

Collection Mapping

NHibernate 1.0.2 50

cessary INSERT/UPDATE and probably even a foreign key violation if both would trigger changes! The same
is of course also true for bidirectional one-to-many associations.

You may map a bidirectional one-to-many association by mapping a one-to-many association to the same table
column(s) as a many-to-one association and declaring the many-valued end inverse="true".

<class name="Eg.Parent, Eg">
<id name="Id" column="id"/>
....
<set name="Children" inverse="true" lazy="true">

<key column="parent_id"/>
<one-to-many class="Eg.Child, Eg"/>

</set>
</class>

<class name="Eg.Child, Eg">
<id name="Id" column="id"/>
....
<many-to-one name="Parent" class="Eg.Parent, Eg" column="parent_id"/>

</class>

Mapping one end of an association with inverse="true" doesn't affect the operation of cascades, both are dif-
ferent concepts!

6.9. Ternary Associations

There are two possible approaches to mapping a ternary association. One approach is to use composite ele-
ments (discussed below). Another is to use an IDictionary with an association as its index:

<map name="Contracts" lazy="true">
<key column="employer_id"/>
<index-many-to-many column="employee_id" class="Employee"/>
<one-to-many column="contract_id" class="Contract"/>

</map>

<map name="Connections" lazy="true">
<key column="node1_id"/>
<index-many-to-many column="node2_id" class="Node"/>
<many-to-many column="connection_id" class="Connection"/>

</map>

6.10. Heterogeneous Associations

The <many-to-any> and <index-many-to-any> elements provide for true heterogeneous associations. These
mapping elements work in the same way as the <any> element - and should also be used rarely, if ever.

6.11. Collection examples

The previous sections are pretty confusing. So lets look at an example. This class:

using System;
using System.Collections;

namespace Eg

public class Parent
{

Collection Mapping

NHibernate 1.0.2 51

private long id;
private ISet children;

public long Id
{

get { return id; }
set { id = value; }

}

private ISet Children
{

get { return children; }
set { children = value; }

}

....

....
}

}

has a collection of Eg.Child instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"
assembly="Eg" namespace="Eg">

<class name="Parent">
<id name="Id">

<generator class="sequence"/>
</id>
<set name="Children" lazy="true">

<key column="parent_id"/>
<one-to-many class="Child"/>

</set>
</class>

<class name="Child">
<id name="Id">

<generator class="sequence"/>
</id>
<property name="Name"/>

</class>

</hibernate-mapping>

This maps to the following table definitions:

create table parent (Id bigint not null primary key)
create table child (Id bigint not null primary key, Name varchar(255), parent_id bigint)
alter table child add constraint childfk0 (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"
assembly="Eg" namespace="Eg">

<class name="Parent">
<id name="Id">

<generator class="sequence"/>
</id>
<set name="Children" inverse="true" lazy="true">

<key column="parent_id"/>
<one-to-many class="Child"/>

</set>
</class>

<class name="Child">

Collection Mapping

NHibernate 1.0.2 52

<id name="Id">
<generator class="sequence"/>

</id>
<property name="Name"/>
<many-to-one name="parent" class="Parent" column="parent_id" not-null="true"/>

</class>

</hibernate-mapping>

Notice the NOT NULL constraint:

create table parent (Id bigint not null primary key)
create table child (Id bigint not null

primary key,
Name varchar(255),
parent_id bigint not null)

alter table child add constraint childfk0 (parent_id) references parent

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"
assembly="Eg" namespace="Eg">

<class name="Parent">
<id name="Id">

<generator class="sequence"/>
</id>
<set name="Children" lazy="true" table="childset">

<key column="parent_id"/>
<many-to-many class="Child" column="child_id"/>

</set>
</class>

<class name="eg.Child">
<id name="Id">

<generator class="sequence"/>
</id>
<property name="Name"/>

</class>

</hibernate-mapping>

Table definitions:

create table parent (Id bigint not null primary key)
create table child (Id bigint not null primary key, name varchar(255))
create table childset (parent_id bigint not null,

child_id bigint not null,
primary key (parent_id, child_id))

alter table childset add constraint childsetfk0 (parent_id) references parent
alter table childset add constraint childsetfk1 (child_id) references child

Collection Mapping

NHibernate 1.0.2 53

Chapter 7. Component Mapping
The notion of a component is re-used in several different contexts, for different purposes, throughout NHibern-
ate.

7.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity. The term "component" refers
to the object-oriented notion of composition (not to architecture-level components). For example, you might
model a person like this:

public class Person
{

private DateTime birthday;
private Name name;
private string key;

public string Key
{

get { return key; }
set { key = value; }

}

public DateTime Birthday
{

get { return birthday; }
set { birthday = value; }

}

public Name Name
{

get { return name; }
set { name = value; }

}
......
......

}

public class Name
{

char initial;
string first;
string last;

public string First
{

get { return first; }
set { first = value; }

}

public string Last
{

get { return last; }
set { last = value; }

}

public char Initial
{

get { return initial; }
set { initial = value; }

}
}

NHibernate 1.0.2 54

Now Name may be persisted as a component of Person. Notice that Name defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Our NHibernate mapping would look like:

<class name="Eg.Person, Eg" table="person">
<id name="Key" column="pid" type="string">

<generator class="uuid.hex"/>
</id>
<property name="Birthday" type="date"/>
<component name="Name" class="Eg.Name, Eg"> <!-- class attribute optional -->

<property name="Initial"/>
<property name="First"/>
<property name="Last"/>

</component>
</class>

The person table would have the columns pid, Birthday, Initial, First and Last.

Like all value types, components do not support shared references. The null value semantics of a component
are ad hoc. When reloading the containing object, NHibernate will assume that if all component columns are
null, then the entire component is null. This should be okay for most purposes.

The properties of a component may be of any NHibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. NHibernate is intended to sup-
port a very fine-grained object model.

The <component> element allows a <parent> subelement that maps a property of the component class as a ref-
erence back to the containing entity.

<class name="Eg.Person, Eg" table="person">
<id name="Key" column="pid" type="string">

<generator class="uuid.hex"/>
</id>
<property name="Birthday" type="date"/>
<component name="Name" class="Eg.Name, Eg">

<parent name="NamedPerson"/> <!-- reference back to the Person -->
<property name="Initial"/>
<property name="First"/>
<property name="Last"/>

</component>
</class>

7.2. Collections of dependent objects

Collections of components are supported (eg. an array of type Name). Declare your component collection by re-
placing the <element> tag with a <composite-element> tag.

<set name="SomeNames" table="some_names" lazy="true">
<key column="id"/>
<composite-element class="Eg.Name, Eg"> <!-- class attribute required -->

<property name="Initial"/>
<property name="First"/>
<property name="Last"/>

</composite-element>
</set>

Note: if you define an ISet of composite elements, it is very important to implement Equals() and GetHash-

Code() correctly.

Component Mapping

NHibernate 1.0.2 55

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nested-composite-element> tag. This is a pretty exotic case - a collection of compon-
ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
object model is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set>.
NHibernate has to use each columns value to identify a record when deleting objects (there is no separate
primary key column in the composite element table), which is not possible with null values. You have to either
use only not-null properties in a composite-element or choose a <list>, <map>, <bag> or <idbag>.

A special case of a composite element is a composite element with a nested <many-to-one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from Order to Item where PurchaseDate, Price and
Quantity are properties of the association:

<class name="Order" >
....
<set name="PurchasedItems" table="purchase_items" lazy="true">

<key column="order_id">
<composite-element class="Purchase">

<property name="PurchaseDate"/>
<property name="Price"/>
<property name="Quantity"/>
<many-to-one name="Item" class="Item"/> <!-- class attribute is optional -->

</composite-element>
</set>

</class>

Even ternary (or quaternary, etc) associations are possible:

<class name="Order" >
....
<set name="PurchasedItems" table="purchase_items" lazy="true">

<key column="order_id">
<composite-element class="OrderLine">

<many-to-one name="PurchaseDetails class="Purchase"/>
<many-to-one name="Item" class="Item"/>

</composite-element>
</set>

</class>

Composite elements may appear in queries using the same syntax as associations to other entities.

7.3. Components as IDictionary indices

The <composite-index> element lets you map a component class as the key of an IDictionary. Make sure you
override GetHashCode() and Equals() correctly on the component class.

7.4. Components as composite identifiers

You may use a component as an identifier of an entity class. Your component class must satisfy certain require-
ments:

• It must be Serializable.
• It must re-implement Equals() and GetHashCode(), consistently with the database's notion of composite

Component Mapping

NHibernate 1.0.2 56

key equality.

You can't use an IIdentifierGenerator to generate composite keys. Instead the application must assign its
own identifiers.

Since a composite identifier must be assigned to the object before saving it, we can't use unsaved-value of the
identifier to distinguish between newly instantiated instances and instances saved in a previous session.

You may instead implement IInterceptor.IsUnsaved() if you wish to use SaveOrUpdate() or cascading save
/ update. As an alternative, you may also set the unsaved-value attribute on a <version> (or <timestamp>) ele-
ment to specify a value that indicates a new transient instance. In this case, the version of the entity is used in-
stead of the (assigned) identifier and you don't have to implement IInterceptor.IsUnsaved() yourself.

Use the <composite-id> tag (same attributes and elements as <component>) in place of <id> for the declaration
of a composite identifier class:

<class name="Foo" table="FOOS">
<composite-id name="CompId" class="FooCompositeID">

<key-property name="String"/>
<key-property name="Short"/>
<key-property name="Date" column="date_" type="Date"/>

</composite-id>
<property name="Name"/>
....

</class>

Now, any foreign keys into the table FOOS are also composite. You must declare this in your mappings for other
classes. An association to Foo would be declared like this:

<many-to-one name="Foo" class="Foo">
<!-- the "class" attribute is optional, as usual -->

<column name="foo_string"/>
<column name="foo_short"/>
<column name="foo_date"/>

</many-to-one>

This new <column> tag is also used by multi-column custom types. Actually it is an alternative to the column at-
tribute everywhere. A collection with elements of type Foo would use:

<set name="Foos">
<key column="owner_id"/>
<many-to-many class="Foo">

<column name="foo_string"/>
<column name="foo_short"/>
<column name="foo_date"/>

</many-to-many>
</set>

On the other hand, <one-to-many>, as usual, declares no columns.

If Foo itself contains collections, they will also need a composite foreign key.

<class name="Foo">
....
....
<set name="Dates" lazy="true">

<key> <!-- a collection inherits the composite key type -->
<column name="foo_string"/>
<column name="foo_short"/>
<column name="foo_date"/>

</key>
<element column="foo_date" type="Date"/>

</set>

Component Mapping

NHibernate 1.0.2 57

</class>

7.5. Dynamic components

You may even map a property of type IDictionary:

<dynamic-component name="UserAttributes">
<property name="Foo" column="FOO"/>
<property name="Bar" column="BAR"/>
<many-to-one name="Baz" class="Baz" column="BAZ"/>

</dynamic-component>

The semantics of a <dynamic-component> mapping are identical to <component>. The advantage of this kind of
mapping is the ability to determine the actual properties of the component at deployment time, just by editing
the mapping document. (Runtime manipulation of the mapping document is also possible, using a DOM pars-
er.)

Component Mapping

NHibernate 1.0.2 58

Chapter 8. Inheritance Mapping

8.1. The Three Strategies

NHibernate supports the three basic inheritance mapping strategies.

• table per class hierarchy

• table per subclass

• table per concrete class (some limitations)

It is even possible to use different mapping strategies for different branches of the same inheritance hierarchy,
but the same limitations apply as apply to table-per-concrete class mappings. NHibernate does not support mix-
ing <subclass> mappings and <joined-subclass> mappings inside the same <class> element.

Suppose we have an interface IPayment, with implementors CreditCardPayment, CashPayment, ChequePay-
ment. The table-per-hierarchy mapping would look like:

<class name="IPayment" table="PAYMENT">
<id name="Id" type="Int64" column="PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="String"/>
<property name="Amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">

...
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

...
</subclass>

</class>

Exactly one table is required. There is one big limitation of this mapping strategy: columns declared by the sub-
classes may not have NOT NULL constraints.

A table-per-subclass mapping would look like:

<class name="IPayment" table="PAYMENT">
<id name="Id" type="Int64" column="PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>

NHibernate 1.0.2 59

</class>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

Note that NHibernate's implementation of table-per-subclass requires no discriminator column. Other object/
relational mappers use a different implementation of table-per-subclass which requires a type discriminator
column in the superclass table. The approach taken by NHibernate is much more difficult to implement but ar-
guably more correct from a relational point of view.

For either of these two mapping strategies, a polymorphic association to IPayment is mapped using
<many-to-one>.

<many-to-one name="Payment"
column="PAYMENT"
class="IPayment"/>

The table-per-concrete-class strategy is very different.

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="Id" type="Int64" column="CREDIT_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="CREDIT_AMOUNT"/>
...

</class>

<class name="CashPayment" table="CASH_PAYMENT">
<id name="Id" type="Int64" column="CASH_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="CASH_AMOUNT"/>
...

</class>

<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="Id" type="Int64" column="CHEQUE_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="CHEQUE_AMOUNT"/>
...

</class>

Three tables were required. Notice that nowhere do we mention the IPayment interface explicitly. Instead, we
make use of NHibernate's implicit polymorphism. Also notice that properties of IPayment are mapped in each
of the subclasses.

In this case, a polymorphic association to IPayment is mapped using <any>.

<any name="Payment"
meta-type="class"
id-type="Int64">

<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>

</any>

It would be better if we defined an IUserType as the meta-type, to handle the mapping from type discriminator
strings to IPayment subclass.

<any name="payment"
meta-type="PaymentMetaType"
id-type="Int64">

Inheritance Mapping

NHibernate 1.0.2 60

<column name="PAYMENT_TYPE"/> <!-- CREDIT, CASH or CHEQUE -->
<column name="PAYMENT_ID"/>

</any>

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<class> element (and since IPayment is just an interface), each of the subclasses could easily be part of another
table-per-class or table-per-subclass inheritance hierarchy! (And you can still use polymorphic queries against
the IPayment interface.)

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="Id" type="Int64" column="CREDIT_PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="String"/>
<property name="Amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>

</class>

<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="Id" type="Int64" column="TXN_ID">

<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">

<key column="PAYMENT_ID"/>
<property name="Amount" column="CASH_AMOUNT"/>
...

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

<key column="PAYMENT_ID"/>
<property name="Amount" column="CHEQUE_AMOUNT"/>
...

</joined-subclass>
</class>

Once again, we don't mention IPayment explicitly. If we execute a query against the IPayment interface - for
example, from IPayment - NHibernate automatically returns instances of CreditCardPayment (and its sub-
classes, since they also implement IPayment), CashPayment and ChequePayment but not instances of Nonelec-
tronicTransaction.

8.2. Limitations

NHibernate assumes that an association maps to exactly one foreign key column. Multiple associations per for-
eign key are tolerated (you might need to specify inverse="true" or insert="false" update="false"), but
there is no way to map any association to multiple foreign keys. This means that:

• when an association is modified, it is always the same foreign key that is updated

• when an association is fetched lazily, a single database query is used

• when an association is fetched eagerly, it may be fetched using a single outer join

In particular, it implies that polymorphic one-to-many associations to classes mapped using the table-
per-concrete-class strategy are not supported. (Fetching this association would require multiple queries or mul-
tiple joins.)

The following table shows the limitations of table-per-concrete-class mappings, and of implicit polymorphism,

Inheritance Mapping

NHibernate 1.0.2 61

in NHibernate.

Table 8.1. Features of inheritance mappings

Inherit-
ance
strategy

Poly-
morphic
many-
to-one

Poly-
morphic
one-to-one

Poly-
morphic
one-
to-many

Poly-
morphic
many-
to-many

Poly-
morphic
Load()/Get

()

Poly-
morphic
queries

Poly-
morphic
joins

table-
per-
class-
hierarchy

<many-to-o

ne>

<one-to-on

e>

<one-to-ma

ny>

<many-to-m

any>

s.Get(type

of(IPaymen

t), id)

from Pay-

ment p

from Order

o join

o.payment

p

table-
per-
subclass

<many-to-o

ne>

<one-to-on

e>

<one-to-ma

ny>

<many-to-m

any>

s.Get(type

of(IPaymen

t), id)

from IPay-

ment p

from Order

o join

o.Payment

p

table-
per-
concrete-
class
(implicit
polymorph-
ism)

<any> not suppor-
ted

not suppor-
ted

<many-to-a

ny>

use a query from Pay-

ment p

not suppor-
ted

Inheritance Mapping

NHibernate 1.0.2 62

Chapter 9. Manipulating Persistent Data

9.1. Creating a persistent object

An object (entity instance) is either transient or persistent with respect to a particular ISession. Newly instanti-
ated objects are, of course, transient. The session offers services for saving (ie. persisting) transient instances:

DomesticCat fritz = new DomesticCat();
fritz.Color = Color.Ginger;
fritz.Sex = 'M';
fritz.Name = "Fritz";
long generatedId = (long) sess.Save(fritz);

DomesticCat pk = new DomesticCat();
pk.Color = Color.Tabby;
pk.Sex = 'F';
pk.Name = "PK";
pk.Kittens = new HashSet();
pk.AddKitten(fritz);
sess.Save(pk, 1234L);

The single-argument Save() generates and assigns a unique identifier to fritz. The two-argument form at-
tempts to persist pk using the given identifier. We generally discourage the use of the two-argument form since
it may be used to create primary keys with business meaning.

Associated objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a
foreign key column. There is never a risk of violating foreign key constraints. However, you might violate a
NOT NULL constraint if you Save() the objects in the wrong order.

9.2. Loading an object

The Load() methods of ISession give you a way to retrieve a persistent instance if you already know its identi-
fier. One version takes a class object and will load the state into a newly instantiated object. The second version
allows you to supply an instance into which the state will be loaded. The form which takes an instance is only
useful in special circumstances (DIY instance pooling etc.)

Cat fritz = (Cat) sess.Load(typeof(Cat), generatedId);

long pkId = 1234;
DomesticCat pk = (DomesticCat) sess.Load(typeof(Cat), pkId);

Cat cat = new DomesticCat();
// load pk's state into cat
sess.Load(cat, pkId);
ISet kittens = cat.Kittens;

Note that Load() will throw an unrecoverable exception if there is no matching database row. If the class is
mapped with a proxy, Load() returns an object that is an uninitialized proxy and does not actually hit the data-
base until you invoke a method of the object. This behaviour is very useful if you wish to create an association
to an object without actually loading it from the database.

If you are not certain that a matching row exists, you should use the Get() method, which hits the database im-
mediately and returns null if there is no matching row.

NHibernate 1.0.2 63

Cat cat = (Cat) sess.Get(typeof(Cat), id);
if (cat==null) {

cat = new Cat();
sess.Save(cat, id);

}
return cat;

You may also load an objects using an SQL SELECT ... FOR UPDATE. See the next section for a discussion of
NHibernate LockModes.

Cat cat = (Cat) sess.Get(typeof(Cat), id, LockMode.Upgrade);

Note that any associated instances or contained collections are not selected FOR UPDATE.

It is possible to re-load an object and all its collections at any time, using the Refresh() method. This is useful
when database triggers are used to initialize some of the properties of the object.

sess.Save(cat);
sess.Flush(); //force the SQL INSERT
sess.Refresh(cat); //re-read the state (after the trigger executes)

9.3. Querying

If you don't know the identifier(s) of the object(s) you are looking for, use the Find() methods of ISession.
NHibernate supports a simple but powerful object oriented query language.

IList cats = sess.Find(
"from Cat as cat where cat.Birthdate = ?",
date,
NHibernateUtil.Date

);

IList mates = sess.Find(
"select mate from Cat as cat join cat.Mate as mate " +
"where cat.name = ?",
name,
NHibernateUtil.String

);

IList cats = sess.Find("from Cat as cat where cat.Mate.Birthdate is null");

IList moreCats = sess.Find(
"from Cat as cat where " +
"cat.Name = 'Fritz' or cat.id = ? or cat.id = ?",
new object[] { id1, id2 },
new IType[] { NHibernateUtil.Int64, NHibernateUtil.Int64 }

);

IList mates = sess.Find(
"from Cat as cat where cat.Mate = ?",
izi,
NHibernateUtil.Entity(typeof(Cat))

);

IList problems = sess.Find(
"from GoldFish as fish " +
"where fish.Birthday > fish.Deceased or fish.Birthday is null"

);

The second argument to Find() accepts an object or array of objects. The third argument accepts a NHibernate
type or array of NHibernate types. These given types are used to bind the given objects to the ? query place-

Manipulating Persistent Data

NHibernate 1.0.2 64

holders (which map to input parameters of an ADO.NET IDbCommand). Just as in ADO.NET, you should use
this binding mechanism in preference to string manipulation.

The NHibernateUtil class defines a number of static methods and constants, providing access to most of the
built-in types, as instances of NHibernate.Type.IType.

If you expect your query to return a very large number of objects, but you don't expect to use them all, you
might get better performance from the Enumerable() methods, which return a Sys-

tem.Collections.IEnumerable. The iterator will load objects on demand, using the identifiers returned by an
initial SQL query (n+1 selects total).

// fetch ids
IEnumerable en = sess.Enumerable("from eg.Qux q order by q.Likeliness");
foreach (Qux qux in en)
{

// something we couldnt express in the query
if (qux.CalculateComplicatedAlgorithm()) {

// dont need to process the rest
break;

}
}

The Enumerable() method also performs better if you expect that many of the objects are already loaded and
cached by the session, or if the query results contain the same objects many times. (When no data is cached or
repeated, Find() is almost always faster.) Heres an example of a query that should be called using Enumer-

able():

IEnumerable en = sess.Enumerable(
"select customer, product " +
"from Customer customer, " +
"Product product " +
"join customer.Purchases purchase " +
"where product = purchase.Product"

);

Calling the previous query using Find() would return a very large ADO.NET result set containing the same
data many times.

NHibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

IEnumerable foosAndBars = sess.Enumerable(
"select foo, bar from Foo foo, Bar bar " +
"where bar.Date = foo.Date"

);
foreach (object[] tuple in foosAndBars)
{

Foo foo = tuple[0]; Bar bar = tuple[1];
....

}

9.3.1. Scalar queries

Queries may specify a property of a class in the select clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar" results.

IEnumerable results = sess.Enumerable(
"select cat.Color, min(cat.Birthdate), count(cat) from Cat cat " +
"group by cat.Color"

);
foreach (object[] row in results)

Manipulating Persistent Data

NHibernate 1.0.2 65

{
Color type = (Color) row[0];
DateTime oldest = (DateTime) row[1];
int count = (int) row[2];
.....

}

IEnumerable en = sess.Enumerable(
"select cat.Type, cat.Birthdate, cat.Name from DomesticCat cat"

);

IList list = sess.Find(
"select cat, cat.Mate.Name from DomesticCat cat"

);

9.3.2. The IQuery interface

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should obtain an instance of NHibernate.IQuery:

IQuery q = sess.CreateQuery("from DomesticCat cat");
q.SetFirstResult(20);
q.SetMaxResults(10);
IList cats = q.List();

You may even define a named query in the mapping document. (Remember to use a CDATA section if your
query contains characters that could be interpreted as markup.)

<query name="Eg.DomesticCat.by.name.and.minimum.weight"><![CDATA[
from Eg.DomesticCat as cat

where cat.Name = ?
and cat.Weight > ?

]]></query>

IQuery q = sess.GetNamedQuery("Eg.DomesticCat.by.name.and.minimum.weight");
q.SetString(0, name);
q.SetInt32(1, minWeight);
IList cats = q.List();

The query interface supports the use of named parameters. Named parameters are identifiers of the form :name

in the query string. There are methods on IQuery for binding values to named or positional parameters.
NHibernate numbers parameters from zero. The advantages of named parameters are:

• named parameters are insensitive to the order they occur in the query string
• they may occur multiple times in the same query
• they are self-documenting

//named parameter (preferred)
IQuery q = sess.CreateQuery("from DomesticCat cat where cat.Name = :name");
q.SetString("name", "Fritz");
IEnumerable cats = q.Enumerable();

//positional parameter
IQuery q = sess.CreateQuery("from DomesticCat cat where cat.Name = ?");
q.SetString(0, "Izi");
IEnumerable cats = q.Enumerable();

//named parameter list
IList names = new ArrayList();

Manipulating Persistent Data

NHibernate 1.0.2 66

names.Add("Izi");
names.Add("Fritz");
IQuery q = sess.CreateQuery("from DomesticCat cat where cat.Name in (:namesList)");
q.SetParameterList("namesList", names);
IList cats = q.List();

9.3.3. Filtering collections

A collection filter is a special type of query that may be applied to a persistent collection or array. The query
string may refer to this, meaning the current collection element.

ICollection blackKittens = session.Filter(
pk.Kittens, "where this.Color = ?", Color.Black, NHibernateUtil.Enum(typeof(Color))

);

The returned collection is considered a bag.

Observe that filters do not require a from clause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

ICollection blackKittenMates = session.Filter(
pk.Kittens, "select this.Mate where this.Color = Eg.Color.Black"

);

9.3.4. Criteria queries

HQL is extremely powerful but some people prefer to build queries dynamically, using an object oriented API,
rather than embedding strings in their .NET code. For these people, NHibernate provides an intuitive ICriter-

ia query API.

ICriteria crit = session.CreateCriteria(typeof(Cat));
crit.Add(Expression.Eq("color", Eg.Color.Black));
crit.SetMaxResults(10);
IList cats = crit.List();

If you are uncomfortable with SQL-like syntax, this is perhaps the easiest way to get started with NHibernate.
This API is also more extensible than HQL. Applications might provide their own implementations of the
ICriterion interface.

9.3.5. Queries in native SQL

You may express a query in SQL, using CreateSQLQuery(). You must enclose SQL aliases in braces.

IList cats = session.CreateSQLQuery(
"SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10",
"cat",
typeof(Cat)

).List();

IList cats = session.CreateSQLQuery(
"SELECT {cat}.ID AS {cat.Id}, {cat}.SEX AS {cat.Sex}, " +

"{cat}.MATE AS {cat.Mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROWNUM<10",
"cat",
typeof(Cat)

).list()

Manipulating Persistent Data

NHibernate 1.0.2 67

SQL queries may contain named and positional parameters, just like NHibernate queries.

9.4. Updating objects

9.4.1. Updating in the same ISession

Transactional persistent instances (ie. objects loaded, saved, created or queried by the ISession) may be ma-
nipulated by the application and any changes to persistent state will be persisted when the ISession is flushed
(discussed later in this chapter). So the most straightforward way to update the state of an object is to Load() it,
and then manipulate it directly, while the ISession is open:

DomesticCat cat = (DomesticCat) sess.Load(typeof(Cat), 69L);
cat.Name = "PK";
sess.Flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore NHibernate offers an al-
ternate approach.

9.4.2. Updating detached objects

Many applications need to retrieve an object in one transaction, send it to the UI layer for manipulation, then
save the changes in a new transaction. (Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure transaction isolation.) This approach requires a slightly different
programming model to the one described in the last section. NHibernate supports this model by providing the
method Session.Update().

// in the first session
Cat cat = (Cat) firstSession.Load(typeof(Cat), catId);
Cat potentialMate = new Cat();
firstSession.Save(potentialMate);

// in a higher tier of the application
cat.Mate = potentialMate;

// later, in a new session
secondSession.Update(cat); // update cat
secondSession.Update(mate); // update mate

If the Cat with identifier catId had already been loaded by secondSession when the application tried to update
it, an exception would have been thrown.

The application should individually Update() transient instances reachable from the given transient instance if
and only if it wants their state also updated. (Except for lifecycle objects, discussed later.)

Hibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or update the persistent state associated with its current identifier. The SaveOrUpdate() method
now implements this functionality.

NHibernate distinguishes "new" (unsaved) instances from "existing" (saved or loaded in a previous session) in-
stances by the value of their identifier (or version, or timestamp) property. The unsaved-value attribute of the
<id> (or <version>, or <timestamp>) mapping specifies which values should be interpreted as representing a
"new" instance.

Manipulating Persistent Data

NHibernate 1.0.2 68

<id name="Id" type="Int64" column="uid" unsaved-value="0">
<generator class="hilo"/>

</id>

The allowed values of unsaved-value are:

• any - always save
• none - always update
• null - save when identifier is null
• valid identifier value - save when identifier is null or the given value
• undefined - if set for version or timestamp, then identifier check is used

If unsaved-value is not specified for a class, NHibernate will attempt to guess it by creating an instance of the
class using the no-argument constructor and reading the property value from the instance.

// in the first session
Cat cat = (Cat) firstSession.Load(typeof(Cat), catID);

// in a higher tier of the application
Cat mate = new Cat();
cat.Mate = mate;

// later, in a new session
secondSession.SaveOrUpdate(cat); // update existing state (cat has a non-null id)
secondSession.SaveOrUpdate(mate); // save the new instance (mate has a null id)

The usage and semantics of SaveOrUpdate() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use Update() or
SaveOrUpdate(). Some whole applications will never use either of these methods.

Usually Update() or SaveOrUpdate() are used in the following scenario:

• the application loads an object in the first session
• the object is passed up to the UI tier
• some modifications are made to the object
• the object is passed back down to the business logic tier
• the application persists these modifications by calling update() in a second session

SaveOrUpdate() does the following:

• if the object is already persistent in this session, do nothing
• if the object has no identifier property, save() it
• if the object's identifier matches the criteria specified by unsaved-value, save() it
• if the object is versioned (version or timestamp), then the version will take precedence to identifier check,

unless the versions unsaved-value="undefined" (default value)
• if another object associated with the session has the same identifier, throw an exception

The last case can be avoided by using SaveOrUpdateCopy(Object o). This method copies the state of the given
object onto the persistent object with the same identifier. If there is no persistent instance currently associated
with the session, it will be loaded. The method returns the persistent instance. If the given instance is unsaved
or does not exist in the database, NHibernate will save it and return it as a newly persistent instance. Otherwise,
the given instance does not become associated with the session. In most applications with detached objects, you
need both methods, SaveOrUpdate() and SaveOrUpdateCopy().

9.4.3. Reattaching detached objects

Manipulating Persistent Data

NHibernate 1.0.2 69

The Lock() method allows the application to reassociate an unmodified object with a new session.

//just reassociate:
sess.Lock(fritz, LockMode.None);
//do a version check, then reassociate:
sess.Lock(izi, LockMode.Read);
//do a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.Lock(pk, LockMode.Upgrade);

9.5. Deleting persistent objects

ISession.Delete() will remove an object's state from the database. Of course, your application might still
hold a reference to it. So it's best to think of Delete() as making a persistent instance transient.

sess.Delete(cat);

You may also delete many objects at once by passing a NHibernate query string to Delete().

You may now delete objects in any order you like, without risk of foreign key constraint violations. Of course,
it is still possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong or-
der.

9.6. Flush

From time to time the ISession will execute the SQL statements needed to synchronize the ADO.NET connec-
tion's state with the state of objects held in memory. This process, flush, occurs by default at the following
points

• from some invocations of Find() or Enumerable()
• from NHibernate.ITransaction.Commit()

• from ISession.Flush()

The SQL statements are issued in the following order

1. all entity insertions, in the same order the corresponding objects were saved using ISession.Save()

2. all entity updates
3. all collection deletions
4. all collection element deletions, updates and insertions
5. all collection insertions
6. all entity deletions, in the same order the corresponding objects were deleted using ISession.Delete()

(An exception is that objects using native ID generation are inserted when they are saved.)

Except when you explicity Flush(), there are absolutely no guarantees about when the Session executes the
JDBC calls, only the order in which they are executed. However, NHibernate does guarantee that the ISes-

sion.Find(..) methods will never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The FlushMode class defines
three different modes: only flush at commit time (and only when the NHibernate ITransaction API is used),
flush automatically using the explained routine, or never flush unless Flush() is called explicitly. The last
mode is useful for long running units of work, where an ISession is kept open and disconnected for a long time
(see Section 10.4, “Optimistic concurrency control”).

Manipulating Persistent Data

NHibernate 1.0.2 70

sess = sf.OpenSession();
ITransaction tx = sess.BeginTransaction();
sess.FlushMode = FlushMode.Commit; //allow queries to return stale state
Cat izi = (Cat) sess.Load(typeof(Cat), id);
izi.Name = "iznizi";
// execute some queries....
sess.Find("from Cat as cat left outer join cat.Kittens kitten");
//change to izi is not flushed!
...
tx.Commit(); //flush occurs

9.7. Ending a Session

Ending a session involves four distinct phases:

• flush the session
• commit the transaction
• close the session
• handle exceptions

9.7.1. Flushing the Session

If you happen to be using the ITransaction API, you don't need to worry about this step. It will be performed
implicitly when the transaction is committed. Otherwise you should call Session.Flush() to ensure that all
changes are synchronized with the database.

9.7.2. Committing the database transaction

If you are using the NHibernate ITransaction API, this looks like:

tx.Commit(); // flush the session and commit the transaction

If you are managing ADO.NET transactions yourself you should manually Commit() the ADO.NET transac-
tion.

sess.Flush();
currentTransaction.Commit();

If you decide not to commit your changes:

tx.Rollback(); // rollback the transaction

or:

currentTransaction.Rollback();

If you rollback the transaction you should immediately close and discard the current session to ensure that
NHibernate's internal state is consistent.

9.7.3. Closing the ISession

A call to ISession.Close() marks the end of a session. The main implication of Close() is that the ADO.NET
connection will be relinquished by the session.

Manipulating Persistent Data

NHibernate 1.0.2 71

tx.Commit();
sess.Close();

sess.Flush();
currentTransaction.Commit();
sess.Close();

If you provided your own connection, Close() returns a reference to it, so you can manually close it or return it
to the pool. Otherwise Close() returns it to the pool.

9.8. Exception handling

NHibernate use might lead to exceptions, usually HibernateException. This exception can have a nested inner
exception (the root cause), use the InnerException property to access it.

If the ISession throws an exception you should immediately rollback the transaction, call ISession.Close()
and discard the ISession instance. Certain methods of ISession will not leave the session in a consistent state.

For exceptions thrown by the data provider while interacting with the database, NHibernate will wrap the error
in an instance of ADOException. The underlying exception is accessible by calling ADOExcep-

tion.InnerException.

The following exception handling idiom shows the typical case in NHibernate applications:

using (ISession sess = factory.OpenSession())
using (ITransaction tx = sess.BeginTransaction())
{

// do some work
...
tx.Commit();

}

Or, when manually managing ADO.NET transactions:

ISession sess = factory.openSession();
try
{

// do some work
...
sess.Flush();
currentTransaction.Commit();

}
catch (Exception e)
{

currentTransaction.Rollback();
throw;

}
finally
{

sess.Close();
}

9.9. Lifecyles and object graphs

To save or update all objects in a graph of associated objects, you must either

• Save(), SaveOrUpdate() or Update() each individual object OR

Manipulating Persistent Data

NHibernate 1.0.2 72

• map associated objects using cascade="all" or cascade="save-update".

Likewise, to delete all objects in a graph, either

• Delete() each individual object OR
• map associated objects using cascade="all", cascade="all-delete-orphan" or cascade="delete".

Recommendation:

• If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="all".

• Otherwise, Save() and Delete() it explicitly from application code. If you really want to save yourself
some extra typing, use cascade="save-update" and explicit Delete().

Mapping an association (many-to-one, or collection) with cascade="all" marks the association as a parent/
child style relationship where save/update/deletion of the parent results in save/update/deletion of the
child(ren). Futhermore, a mere reference to a child from a persistent parent will result in save / update of the
child. The metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automat-
ically deleted, except in the case of a <one-to-many> association mapped with cascade="all-delete-orphan".
The precise semantics of cascading operations are as follows:

• If a parent is saved, all children are passed to SaveOrUpdate()

• If a parent is passed to Update() or SaveOrUpdate(), all children are passed to SaveOrUpdate()

• If a transient child becomes referenced by a persistent parent, it is passed to SaveOrUpdate()

• If a parent is deleted, all children are passed to Delete()

• If a transient child is dereferenced by a persistent parent, nothing special happens (the application should
explicitly delete the child if necessary) unless cascade="all-delete-orphan", in which case the
"orphaned" child is deleted.

NHibernate does not fully implement "persistence by reachability", which would imply (inefficient) persistent
garbage collection. However, due to popular demand, NHibernate does support the notion of entities becoming
persistent when referenced by another persistent object. Associations marked cascade="save-update" behave
in this way. If you wish to use this approach throughout your application, it's easier to specify the default-

cascade attribute of the <hibernate-mapping> element.

9.10. Interceptors

The IInterceptor interface provides callbacks from the session to the application allowing the application to
inspect and / or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following IInterceptor automatically
sets the CreateTimestamp when an IAuditable is created and updates the LastUpdateTimestamp property
when an IAuditable is updated.

using System;
using NHibernate.Type;

namespace NHibernate.Test
{

[Serializable]
public class AuditInterceptor : IInterceptor
{

private int updates;
private int creates;

public void OnDelete(object entity,
object id,

Manipulating Persistent Data

NHibernate 1.0.2 73

object[] state,
string[] propertyNames,
IType[] types)

{
// do nothing

}

public boolean OnFlushDirty(object entity,
object id,
object[] currentState,
object[] previousState,
string[] propertyNames,
IType[] types) {

if (entity is IAuditable)
{

updates++;
for (int i=0; i < propertyNames.Length; i++)
{

if ("LastUpdateTimestamp" == propertyNames[i])
{

currentState[i] = DateTime.Now;
return true;

}
}

}
return false;

}

public boolean OnLoad(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
return false;

}

public boolean OnSave(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is IAuditable)
{

creates++;
for (int i=0; i<propertyNames.Length; i++)
{

if ("CreateTimestamp" == propertyNames[i])
{

state[i] = DateTime.Now;
return true;

}
}

}
return false;

}

public void PostFlush(ICollection entities)
{

Console.Out.WriteLine("Creations: {0}, Updates: {1}", creates, updates);
}

public void PreFlush(ICollection entities) {
updates=0;
creates=0;

}

......

......

Manipulating Persistent Data

NHibernate 1.0.2 74

}
}

The interceptor would be specified when a session is created.

ISession session = sf.OpenSession(new AuditInterceptor());

You may also set an interceptor on a global level, using the Configuration:

new Configuration().SetInterceptor(new AuditInterceptor());

9.11. Metadata API

NHibernate requires a very rich meta-level model of all entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use NHibernate's metadata to imple-
ment a "smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value types)
and which should not (eg. immutable value types and, possibly, associated entities).

NHibernate exposes metadata via the IClassMetadata and ICollectionMetadata interfaces and the IType

hierarchy. Instances of the metadata interfaces may be obtained from the ISessionFactory.

Cat fritz =;
IClassMetadata catMeta = sessionfactory.GetClassMetadata(typeof(Cat));
long id = (long) catMeta.GetIdentifier(fritz);
object[] propertyValues = catMeta.GetPropertyValues(fritz);
string[] propertyNames = catMeta.PropertyNames;
IType[] propertyTypes = catMeta.PropertyTypes;

// get an IDictionary of all properties which are not collections or associations
// TODO: what about components?

IDictionary namedValues = new HashMap();
for (int i=0; i<propertyNames.Length; i++)
{

if (!propertyTypes[i].IsEntityType && !propertyTypes[i].IsCollectionType)
{
namedValues[propertyNames[i]] = propertyValues[i];

}
}

Manipulating Persistent Data

NHibernate 1.0.2 75

Chapter 10. Transactions And Concurrency
NHibernate is not itself a database. It is a lightweight object-relational mapping tool. Transaction management
is delegated to the underlying database connection. If the connection is enlisted with a distributed transaction,
operations performed by the ISession are atomically part of the wider distributed transaction. NHibernate can
be seen as a thin adapter to ADO.NET, adding object-oriented semantics.

10.1. Configurations, Sessions and Factories

An ISessionFactory is an expensive-to-create, threadsafe object intended to be shared by all application
threads. An ISession is an inexpensive, non-threadsafe object that should be used once, for a single business
process, and then discarded. For example, when using NHibernate in an ASP.NET application, pages could ob-
tain an ISessionFactory using:

ISessionFactory sf = Global.SessionFactory;

Each call to a service method could create a new ISession, Flush() it, Commit() its transaction, Close() it and
finally discard it. (The ISessionFactory may also be kept in a static Singleton helper variable.)

We use the NHibernate ITransaction API as discussed previously, a single Commit() of a NHibernate
ITransaction flushes the state and commits any underlying database connection (with special handling of dis-
tributed transactions).

Ensure you understand the semantics of Flush(). Flushing synchronizes the persistent store with in-memory
changes but not vice-versa. Note that for all NHibernate ADO.NET connections/transactions, the transaction
isolation level for that connection applies to all operations executed by NHibernate!

The next few sections will discuss alternative approaches that utilize versioning to ensure transaction atomicity.
These are considered "advanced" approaches to be used with care.

10.2. Threads and connections

You should observe the following practices when creating NHibernate Sessions:

• Never create more than one concurrent ISession or ITransaction instance per database connection.
• Be extremely careful when creating more than one ISession per database per transaction. The ISession it-

self keeps track of updates made to loaded objects, so a different ISession might see stale data.
• The ISession is not threadsafe! Never access the same ISession in two concurrent threads. An ISession is

usually only a single unit-of-work!

10.3. Considering object identity

The application may concurrently access the same persistent state in two different units-of-work. However, an
instance of a persistent class is never shared between two ISession instances. Hence there are two different no-
tions of identity:

Database Identity
foo.Id.Equals(bar.Id)

NHibernate 1.0.2 76

CLR Identity
foo == bar

Then for objects attached to a particular Session, the two notions are equivalent. However, while the applica-
tion might concurrently access the "same" (persistent identity) business object in two different sessions, the two
instances will actually be "different" (CLR identity).

This approach leaves NHibernate and the database to worry about concurrency. The application never needs to
synchronize on any business object, as long as it sticks to a single thread per ISession or object identity (within
an ISession the application may safely use == to compare objects).

10.4. Optimistic concurrency control

Many business processes require a whole series of interactions with the user interleaved with database accesses.
In web and enterprise applications it is not acceptable for a database transaction to span a user interaction.

Maintaining isolation of business processes becomes the partial responsibility of the application tier, hence we
call this process a long running application transaction. A single application transaction usually spans several
database transactions. It will be atomic if only one of these database transactions (the last one) stores the up-
dated data, all others simply read data.

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. NHibernate provides for three possible approaches to writing application code that uses
optimistic concurrency.

10.4.1. Long session with automatic versioning

A single ISession instance and its persistent instances are used for the whole application transaction.

The ISession uses optimistic locking with versioning to ensure that many database transactions appear to the
application as a single logical application transaction. The ISession is disconnected from any underlying
ADO.NET connection when waiting for user interaction. This approach is the most efficient in terms of data-
base access. The application need not concern itself with version checking or with reattaching detached in-
stances.

// foo is an instance loaded earlier by the Session
session.Reconnect();
transaction = session.BeginTransaction();
foo.Property = "bar";
session.Flush();
transaction.Commit();
session.Disconnect();

The foo object still knows which ISession it was loaded it. As soon as the ISession has an ADO.NET con-
nection, we commit the changes to the object.

This pattern is problematic if our ISession is too big to be stored during user think time, e.g. an HttpSession

should be kept as small as possible. As the ISession is also the (mandatory) first-level cache and contains all
loaded objects, we can propably use this strategy only for a few request/response cycles. This is indeed recom-
mended, as the ISession will soon also have stale data.

10.4.2. Many sessions with automatic versioning

Transactions And Concurrency

NHibernate 1.0.2 77

Each interaction with the persistent store occurs in a new ISession. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
ginally loaded in another ISession and then "reassociates" them using ISession.Update() or ISes-

sion.SaveOrUpdate().

// foo is an instance loaded by a previous Session
foo.Property = "bar";
session = factory.OpenSession();
transaction = session.BeginTransaction();
session.SaveOrUpdate(foo);
session.Flush();
transaction.Commit();
session.Close();

You may also call Lock() instead of Update() and use LockMode.Read (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

10.4.3. Application version checking

Each interaction with the database occurs in a new ISession that reloads all persistent instances from the data-
base before manipulating them. This approach forces the application to carry out its own version checking to
ensure application transaction isolation. (Of course, NHibernate will still update version numbers for you.) This
approach is the least efficient in terms of database access.

// foo is an instance loaded by a previous Session
session = factory.OpenSession();
transaction = session.BeginTransaction();
int oldVersion = foo.Version;
session.Load(foo, foo.Key);
if (oldVersion != foo.Version) throw new StaleObjectStateException();
foo.Property = "bar";
session.Flush();
transaction.Commit();
session.close();

Of course, if you are operating in a low-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check.

10.5. Session disconnection

The first approach described above is to maintain a single ISession for a whole business process thats spans
user think time. (For example, a servlet might keep an ISession in the user's HttpSession.) For performance
reasons you should

1. commit the ITransaction and then
2. disconnect the ISession from the ADO.NET connection

before waiting for user activity. The method ISession.Disconnect() will disconnect the session from the
ADO.NET connection and return the connection to the pool (unless you provided the connection).

ISession.Reconnect() obtains a new connection (or you may supply one) and restarts the session. After re-
connection, to force a version check on data you aren't updating, you may call ISession.Lock() on any objects
that might have been updated by another transaction. You don't need to lock any data that you are updating.

Heres an example:

Transactions And Concurrency

NHibernate 1.0.2 78

ISessionFactory sessions;
IList fooList;
Bar bar;
....
ISession s = sessions.OpenSession();
ITransaction tx = null;

try
{

tx = s.BeginTransaction())

fooList = s.Find(
"select foo from Eg.Foo foo where foo.Date = current date"

// uses db2 date function
);

bar = new Bar();
s.Save(bar);

tx.Commit();
}
catch (Exception)
{

if (tx != null) tx.Rollback();
s.Close();
throw;

}
s.Disconnect();

Later on:

s.Reconnect();

try
{

tx = s.BeginTransaction();

bar.FooTable = new HashMap();
foreach (Foo foo in fooList)
{

s.Lock(foo, LockMode.Read); //check that foo isn't stale
bar.FooTable.Put(foo.Name, foo);

}

tx.Commit();
}
catch (Exception)
{

if (tx != null) tx.Rollback();
throw;

}
finally
{

s.Close();
}

You can see from this how the relationship between ITransactions and ISessions is many-to-one, An ISes-

sion represents a conversation between the application and the database. The ITransaction breaks that con-
versation up into atomic units of work at the database level.

10.6. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. It's usually enough to specify an
isolation level for the ADO.NET connections and then simply let the database do all the work. However, ad-

Transactions And Concurrency

NHibernate 1.0.2 79

vanced users may sometimes wish to obtain exclusive pessimistic locks, or re-obtain locks at the start of a new
transaction.

NHibernate will always use the locking mechanism of the database, never lock objects in memory!

The LockMode class defines the different lock levels that may be acquired by NHibernate. A lock is obtained by
the following mechanisms:

• LockMode.Write is acquired automatically when NHibernate updates or inserts a row.
• LockMode.Upgrade may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases

which support that syntax.
• LockMode.UpgradeNoWait may be acquired upon explicit user request using a SELECT ... FOR UPDATE

NOWAIT under Oracle.
• LockMode.Read is acquired automatically when NHibernate reads data under Repeatable Read or Serializ-

able isolation level. May be re-acquired by explicit user request.
• LockMode.None represents the absence of a lock. All objects switch to this lock mode at the end of an

ITransaction. Objects associated with the session via a call to Update() or SaveOrUpdate() also start out
in this lock mode.

The "explicit user request" is expressed in one of the following ways:

• A call to ISession.Load(), specifying a LockMode.
• A call to ISession.Lock().
• A call to IQuery.SetLockMode().

If ISession.Load() is called with Upgrade or UpgradeNoWait, and the requested object was not yet loaded by
the session, the object is loaded using SELECT ... FOR UPDATE. If Load() is called for an object that is already
loaded with a less restrictive lock than the one requested, NHibernate calls Lock() for that object.

ISession.Lock() performs a version number check if the specified lock mode is Read, Upgrade or Up-

gradeNoWait. (In the case of Upgrade or UpgradeNoWait, SELECT ... FOR UPDATE is used.)

If the database does not support the requested lock mode, NHibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

Transactions And Concurrency

NHibernate 1.0.2 80

Chapter 11. HQL: The Hibernate Query Language
NHibernate is equiped with an extremely powerful query language that (quite intentionally) looks very much
like SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inherit-
ence, polymorphism and association.

11.1. Case Sensitivity

Queries are case-insensitive, except for names of .NET classes and properties. So SeLeCT is the same as sELEct
is the same as SELECT but Eg.FOO is not Eg.Foo and foo.barSet is not foo.BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in Java code.

11.2. The from clause

The simplest possible NHibernate query is of the form:

from Eg.Cat

which simply returns all instances of the class Eg.Cat.

Most of the time, you will need to assign an alias, since you will want to refer to the Cat in other parts of the
query.

from Eg.Cat as cat

This query assigns the alias cat to Cat instances, so we could use that alias later in the query. The as keyword
is optional; we could also write:

from Eg.Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

from Formula, Parameter

from Formula as form, Parameter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with naming stand-
ards for local variables (eg. domesticCat).

11.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using a join.

from Eg.Cat as cat
inner join cat.Mate as mate
left outer join cat.Kittens as kitten

from Eg.Cat as cat left join cat.Mate.Kittens as kittens

NHibernate 1.0.2 81

from Formula form full join form.Parameter param

The supported join types are borrowed from ANSI SQL

• inner join

• left outer join

• right outer join

• full join (not usually useful)

The inner join, left outer join and right outer join constructs may be abbreviated.

from Eg.Cat as cat
join cat.Mate as mate
left join cat.Kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections.

from Eg.Cat as cat
inner join fetch cat.Mate
left join fetch cat.Kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
where clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed via the parent object.

Note that, in the current implementation, only one collection role may be fetched in a query (everything else
would be non-performant). Note also that the fetch construct may not be used in queries called using Enumer-

able(). Finally, note that full join fetch and right join fetch are not meaningful.

11.4. The select clause

The select clause picks which objects and properties to return in the query result set. Consider:

select mate
from Eg.Cat as cat

inner join cat.Mate as mate

The query will select Mates of other Cats. Actually, you may express this query more compactly as:

select cat.Mate from Eg.Cat cat

You may even select collection elements, using the special elements function. The following query returns all
kittens of any cat.

select elements(cat.Kittens) from Eg.Cat cat

Queries may return properties of any value type including properties of component type:

select cat.Name from Eg.DomesticCat cat
where cat.Name like 'fri%'

select cust.Name.FirstName from Customer as cust

HQL: The Hibernate Query Language

NHibernate 1.0.2 82

Queries may return multiple objects and/or properties as an array of type object[]

select mother, offspr, mate.Name
from Eg.DomesticCat as mother

inner join mother.Mate as mate
left outer join mother.Kittens as offspr

or as an actual typesafe object

select new Family(mother, mate, offspr)
from Eg.DomesticCat as mother

join mother.Mate as mate
left join mother.Kittens as offspr

assuming that the class Family has an appropriate constructor.

11.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

select avg(cat.Weight), sum(cat.Weight), max(cat.Weight), count(cat)
from Eg.Cat cat

Collections may also appear inside aggregate functions in the select clause.

select cat, count(elements(cat.Kittens))
from Eg.Cat cat group by cat

The supported aggregate functions are

• avg(...), sum(...), min(...), max(...)

• count(*)

• count(...), count(distinct ...), count(all...)

The distinct and all keywords may be used and have the same semantics as in SQL.

select distinct cat.Name from Eg.Cat cat

select count(distinct cat.Name), count(cat) from Eg.Cat cat

11.6. Polymorphic queries

A query like:

from Eg.Cat as cat

returns instances not only of Cat, but also of subclasses like DomesticCat. NHibernate queries may name any
.NET class or interface in the from clause. The query will return instances of all persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

from System.Object o

The interface INamed might be implemented by various persistent classes:

HQL: The Hibernate Query Language

NHibernate 1.0.2 83

from Eg.Named n, Eg.Named m where n.Name = m.Name

Note that these last two queries will require more than one SQL SELECT. This means that the order by clause
does not correctly order the whole result set.

11.7. The where clause

The where clause allows you to narrow the list of instances returned.

from Eg.Cat as cat where cat.Name='Fritz'

returns instances of Cat named 'Fritz'.

select foo
from Eg.Foo foo, Eg.Bar bar
where foo.StartDate = bar.Date

will return all instances of Foo for which there exists an instance of Bar with a Date property equal to the
StartDate property of the Foo. Compound path expressions make the where clause extremely powerful. Con-
sider:

from Eg.Cat cat where cat.Mate.Name is not null

This query translates to an SQL query with a table (inner) join. If you were to write something like

from Eg.Foo foo
where foo.Bar.Baz.Customer.Address.City is not null

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

from Eg.Cat cat, Eg.Cat rival where cat.Mate = rival.Mate

select cat, mate
from Eg.Cat cat, Eg.Cat mate
where cat.Mate = mate

The special property (lowercase) id may be used to reference the unique identifier of an object. (You may also
use its property name.)

from Eg.Cat as cat where cat.id = 123

from Eg.Cat as cat where cat.Mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Person has a composite identifier consisting of
Country and MedicareNumber.

from Bank.Person person
where person.id.Country = 'AU'

and person.id.MedicareNumber = 123456

from Bank.Account account
where account.Owner.id.Country = 'AU'

and account.Owner.id.MedicareNumber = 123456

HQL: The Hibernate Query Language

NHibernate 1.0.2 84

Once again, the second query requires no table join.

Likewise, the special property class accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be translated to its discriminator value.

from Eg.Cat cat where cat.class = Eg.DomesticCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that ends in a property of component type (as opposed to a property of a
component). For example, if store.Owner is an entity with a component Address

store.Owner.Address.City // okay
store.Owner.Address // error!

An "any" type has the special properties id and class, allowing us to express a join in the following way
(where AuditLog.Item is a property mapped with <any>).

from Eg.AuditLog log, Eg.Payment payment
where log.Item.class = 'Eg.Payment, Eg, Version=...' and log.Item.id = payment.id

Notice that log.Item.class and payment.class would refer to the values of completely different database
columns in the above query.

11.8. Expressions

Expressions allowed in the where clause include most of the kind of things you could write in SQL:

• mathematical operators +, -, *, /

• binary comparison operators =, >=, <=, <>, !=, like

• logical operations and, or, not

• string concatenation ||
• SQL scalar functions like upper() and lower()

• Parentheses () indicate grouping
• in, between, is null

• positional parameters ?
• named parameters :name, :start_date, :x1
• SQL literals 'foo', 69, '1970-01-01 10:00:01.0'

• Enumeration values and constants Eg.Color.Tabby

in and between may be used as follows:

from Eg.DomesticCat cat where cat.Name between 'A' and 'B'

from Eg.DomesticCat cat where cat.Name in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from Eg.DomesticCat cat where cat.Name not between 'A' and 'B'

from Eg.DomesticCat cat where cat.Name not in ('Foo', 'Bar', 'Baz')

Likewise, is null and is not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in NHibernate configuration:

HQL: The Hibernate Query Language

NHibernate 1.0.2 85

<property name="hibernate.query.substitutions">true 1, false 0</property>

This will replace the keywords true and false with the literals 1 and 0 in the translated SQL from this HQL:

from Eg.Cat cat where cat.Alive = true

You may test the size of a collection with the special property size, or the special size() function.

from Eg.Cat cat where cat.Kittens.size > 0

from Eg.Cat cat where size(cat.Kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using minIndex and maxIndex.
Similarly, you may refer to the minimum and maximum elements of a collection of basic type using minEle-

ment and maxElement.

from Calendar cal where cal.Holidays.maxElement > current date

There are also functional forms (which, unlike the constructs above, are not case sensitive):

from Order order where maxindex(order.Items) > 100

from Order order where minelement(order.Items) > 10000

The SQL functions any, some, all, exists, in are supported when passed the element or index set of a col-
lection (elements and indices functions) or the result of a subquery (see below).

select mother from Eg.Cat as mother, Eg.Cat as kit
where kit in elements(mother.Kittens)

select p from Eg.NameList list, Eg.Person p
where p.Name = some elements(list.Names)

from Eg.Cat cat where exists elements(cat.Kittens)

from Eg.Player p where 3 > all elements(p.Scores)

from Eg.Show show where 'fizard' in indices(show.Acts)

Note that these constructs - size, elements, indices, minIndex, maxIndex, minElement, maxElement - have
certain usage restrictions:

• in a where clause: only for databases with subselects
• in a select clause: only elements and indices make sense

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in a where clause only):

from Order order where order.Items[0].id = 1234

select person from Person person, Calendar calendar
where calendar.Holidays['national day'] = person.BirthDay

and person.Nationality.Calendar = calendar

select item from Item item, Order order
where order.Items[order.DeliveredItemIndices[0]] = item and order.id = 11

select item from Item item, Order order
where order.Items[maxindex(order.items)] = item and order.id = 11

The expression inside [] may even be an arithmetic expression.

HQL: The Hibernate Query Language

NHibernate 1.0.2 86

select item from Item item, Order order
where order.Items[size(order.Items) - 1] = item

HQL also provides the built-in index() function, for elements of a one-to-many association or collection of
values.

select item, index(item) from Order order
join order.Items item

where index(item) < 5

Scalar SQL functions supported by the underlying database may be used

from Eg.DomesticCat cat where upper(cat.Name) like 'FRI%'

If you are not yet convinced by all this, think how much longer and less readable the following query would be
in SQL:

select cust
from Product prod,

Store store
inner join store.Customers cust

where prod.Name = 'widget'
and store.Location.Name in ('Melbourne', 'Sydney')
and prod = all elements(cust.CurrentOrder.LineItems)

Hint: something like

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,

stores store,
locations loc,
store_customers sc,
product prod

WHERE prod.name = 'widget'
AND store.loc_id = loc.id
AND loc.name IN ('Melbourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(

SELECT item.prod_id
FROM line_items item, orders o
WHERE item.order_id = o.id

AND cust.current_order = o.id
)

11.9. The order by clause

The list returned by a query may be ordered by any property of a returned class or components:

from Eg.DomesticCat cat
order by cat.Name asc, cat.Weight desc, cat.Birthdate

The optional asc or desc indicate ascending or descending order respectively.

11.10. The group by clause

A query that returns aggregate values may be grouped by any property of a returned class or components:

HQL: The Hibernate Query Language

NHibernate 1.0.2 87

select cat.Color, sum(cat.Weight), count(cat)
from Eg.Cat cat
group by cat.Color

select foo.id, avg(elements(foo.Names)), max(indices(foo.Names))
from Eg.Foo foo
group by foo.id

Note: You may use the elements and indices constructs inside a select clause, even on databases with no
subselects.

A having clause is also allowed.

select cat.color, sum(cat.Weight), count(cat)
from Eg.Cat cat
group by cat.Color
having cat.Color in (Eg.Color.Tabby, Eg.Color.Black)

SQL functions and aggregate functions are allowed in the having and order by clauses, if supported by the un-
derlying database (ie. not in MySQL).

select cat
from Eg.Cat cat

join cat.Kittens kitten
group by cat
having avg(kitten.Weight) > 100
order by count(kitten) asc, sum(kitten.Weight) desc

Note that neither the group by clause nor the order by clause may contain arithmetic expressions.

11.11. Subqueries

For databases that support subselects, NHibernate supports subqueries within queries. A subquery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries (subqueries that
refer to an alias in the outer query) are allowed.

from Eg.Cat as fatcat
where fatcat.Weight > (

select avg(cat.Weight) from Eg.DomesticCat cat
)

from Eg.DomesticCat as cat
where cat.Name = some (

select name.NickName from Eg.Name as name
)

from Eg.Cat as cat
where not exists (

from eg.Cat as mate where mate.Mate = cat
)

from Eg.DomesticCat as cat
where cat.Name not in (

select name.NickName from Eg.Name as name
)

11.12. HQL examples

NHibernate queries can be quite powerful and complex. In fact, the power of the query language is one of

HQL: The Hibernate Query Language

NHibernate 1.0.2 88

NHibernate's main selling points. Here are some example queries very similar to queries that I used on a recent
project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid orders for a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LINE, PRODUCT, CATALOG
and PRICE tables has four inner joins and an (uncorrelated) subselect.

select order.id, sum(price.Amount), count(item)
from Order as order

join order.LineItems as item
join item.Product as product,
Catalog as catalog
join catalog.Prices as price

where order.Paid = false
and order.Customer = :customer
and price.Product = product
and catalog.EffectiveDate < sysdate
and catalog.EffectiveDate >= all (

select cat.EffectiveDate
from Catalog as cat
where cat.EffectiveDate < sysdate

)
group by order
having sum(price.Amount) > :minAmount
order by sum(price.Amount) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really more like this:

select order.id, sum(price.amount), count(item)
from Order as order

join order.LineItems as item
join item.Product as product,
Catalog as catalog
join catalog.Prices as price

where order.Paid = false
and order.Customer = :customer
and price.Product = product
and catalog = :currentCatalog

group by order
having sum(price.Amount) > :minAmount
order by sum(price.Amount) desc

The next query counts the number of payments in each status, excluding all payments in the AwaitingApproval

status where the most recent status change was made by the current user. It translates to an SQL query with two
inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAYMENT_STATUS_CHANGE

tables.

select count(payment), status.Name
from Payment as payment

join payment.CurrentStatus as status
join payment.StatusChanges as statusChange

where payment.Status.Name <> PaymentStatus.AwaitingApproval
or (

statusChange.TimeStamp = (
select max(change.TimeStamp)
from PaymentStatusChange change
where change.Payment = payment

)
and statusChange.User <> :currentUser

)
group by status.Name, status.SortOrder
order by status.SortOrder

HQL: The Hibernate Query Language

NHibernate 1.0.2 89

If I would have mapped the StatusChanges collection as a list, instead of a set, the query would have been
much simpler to write.

select count(payment), status.Name
from Payment as payment

join payment.CurrentStatus as status
where payment.Status.Name <> PaymentStatus.AwaitingApproval

or payment.StatusChanges[maxIndex(payment.StatusChanges)].User <> :currentUser
group by status.Name, status.SortOrder
order by status.SortOrder

The next query uses the MS SQL Server isNull() function to return all the accounts and unpaid payments for
the organization to which the current user belongs. It translates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANIZATION and
ORG_USER tables.

select account, payment
from Account as account

left outer join account.Payments as payment
where :currentUser in elements(account.Holder.Users)

and PaymentStatus.Unpaid = isNull(payment.CurrentStatus.Name, PaymentStatus.Unpaid)
order by account.Type.SortOrder, account.AccountNumber, payment.DueDate

For some databases, we would need to do away with the (correlated) subselect.

select account, payment
from Account as account

join account.Holder.Users as user
left outer join account.Payments as payment

where :currentUser = user
and PaymentStatus.Unpaid = isNull(payment.CurrentStatus.Name, PaymentStatus.Unpaid)

order by account.Type.SortOrder, account.AccountNumber, payment.DueDate

11.13. Tips & Tricks

You can count the number of query results without actually returning them:

IEnumerable countEn = session.Enumerable("select count(*) from");
countEn.MoveNext();
int count = (int) countEn.Current;

To order a result by the size of a collection, use the following query:

select usr.id, usr.Name
from User as usr

left join usr.Messages as msg
group by usr.id, usr.Name
order by count(msg)

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.Messages) >= 1

If your database doesn't support subselects, use the following query:

select usr.id, usr.Name
from User usr

join usr.Messages msg

HQL: The Hibernate Query Language

NHibernate 1.0.2 90

group by usr.id, usr.Name
having count(msg) >= 1

As this solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

select usr.id, usr.Name
from User as usr

left join usr.Messages as msg
group by usr.id, usr.Name
having count(msg) = 0

Properties of an object can be bound to named query parameters:

IQuery q = s.CreateQuery("from foo in class Foo where foo.Name=:Name and foo.Size=:Size");
q.SetProperties(fooBean); // fooBean has properties Name and Size
IList foos = q.List();

Collections are pageable by using the IQuery interface with a filter:

IQuery q = s.CreateFilter(collection, ""); // the trivial filter
q.setMaxResults(PageSize);
q.setFirstResult(PageSize * pageNumber);
IList page = q.List();

Collection elements may be ordered or grouped using a query filter:

ICollection orderedCollection = s.Filter(collection, "order by this.Amount");
ICollection counts = s.Filter(collection, "select this.Type, count(this) group by this.Type");

HQL: The Hibernate Query Language

NHibernate 1.0.2 91

Chapter 12. Criteria Queries
NHibernate now features an intuitive, extensible criteria query API. For now, this API is less powerful than the
more mature HQL query facilities. In particular, criteria queries do not support projection or aggregation.

12.1. Creating an ICriteria instance

The interface NHibernate.ICriteria represents a query against a particular persistent class. The ISession is a
factory for ICriteria instances.

ICriteria crit = sess.CreateCriteria(typeof(Cat));
crit.SetMaxResults(50);
List cats = crit.List();

12.2. Narrowing the result set

An individual query criterion is an instance of the interface NHibernate.Expression.ICriterion. The class
NHibernate.Expression.Expression defines factory methods for obtaining certain built-in ICriterion types.

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.Like("Name", "Fritz%"))
.Add(Expression.Between("Weight", minWeight, maxWeight))
.List();

Expressions may be grouped logically.

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.Like("Name", "Fritz%"))
.Add(Expression.Or(

Expression.Eq("Age", 0),
Expression.IsNull("Age")

))
.List();

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.In("Name", new String[] { "Fritz", "Izi", "Pk" }))
.Add(Expression.Disjunction()

.Add(Expression.IsNull("Age"))
.Add(Expression.Eq("Age", 0))
.Add(Expression.Eq("Age", 1))
.Add(Expression.Eq("Age", 2))

))
.List();

There are quite a range of built-in criterion types (Expression subclasses), but one that is especially useful lets
you specify SQL directly.

// Create a string parameter for the SqlString below
Parameter paramName = new Parameter("someName", new StringSqlType());

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.Sql(

new SqlString(new object[] {
"lower({alias}.Name) like lower(",
paramName,
")" }),

"Fritz%",

NHibernate 1.0.2 92

NHibernateUtil.String)
.List();

The {alias} placeholder with be replaced by the row alias of the queried entity.

12.3. Ordering the results

You may order the results using NHibernate.Expression.Order.

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.Like("Name", "F%")
.AddOrder(Order.Asc("Name"))
.AddOrder(Order.Desc("Age"))
.SetMaxResults(50)
.List();

12.4. Associations

You may easily specify constraints upon related entities by navigating associations using CreateCriteria().

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.Like("Name", "F%")
.CreateCriteria("Kittens")

.Add(Expression.Like("Name", "F%"))
.List();

note that the second CreateCriteria() returns a new instance of ICriteria, which refers to the elements of
the Kittens collection.

The following, alternate form is useful in certain circumstances.

IList cats = sess.CreateCriteria(typeof(Cat))
.CreateAlias("Kittens", "kt")
.CreateAlias("Mate", "mt")
.Add(Expression.EqProperty("kt.Name", "mt.Name"))
.List();

(CreateAlias() does not create a new instance of ICriteria.)

Note that the kittens collections held by the Cat instances returned by the previous two queries are not pre-
filtered by the criteria! If you wish to retrieve just the kittens that match the criteria, you must use SetResult-

Transformer(CriteriaUtil.AliasToEntityMap).

IList cats = sess.CreateCriteria(typeof(Cat))
.CreateCriteria("Kittens", "kt")

.Add(Expression.Eq("Name", "F%"))
.SetResultTransformer(CriteriaUtil.AliasToEntityMap)
.List();

foreach (IDictionary map in cats)
{

Cat cat = (Cat) map[CriteriaUtil.RootAlias];
Cat kitten = (Cat) map["kt"];

}

12.5. Dynamic association fetching

Criteria Queries

NHibernate 1.0.2 93

You may specify association fetching semantics at runtime using SetFetchMode().

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.Like("Name", "Fritz%"))
.SetFetchMode("Mate", FetchMode.Eager)
.SetFetchMode("Kittens", FetchMode.Eager)
.List();

This query will fetch both Mate and Kittens by outer join.

12.6. Example queries

The class NHibernate.Expression.Example allows you to construct a query criterion from a given instance.

Cat cat = new Cat();
cat.Sex = 'F';
cat.Color = Color.Black;
List results = session.CreateCriteria(typeof(Cat))

.Add(Example.Create(cat))

.List();

Version properties, identifiers and associations are ignored. By default, null valued properties and properties
which return an empty string from the call to ToString() are excluded.

You can adjust how the Example is applied.

Example example = Example.Create(cat)
.ExcludeZeroes() //exclude null or zero valued properties
.ExcludeProperty("Color") //exclude the property named "color"
.IgnoreCase() //perform case insensitive string comparisons
.EnableLike(); //use like for string comparisons

IList results = session.CreateCriteria(typeof(Cat))
.Add(example)
.List();

You can even use examples to place criteria upon associated objects.

IList results = session.CreateCriteria(typeof(Cat))
.Add(Example.Create(cat))
.CreateCriteria("Mate")

.Add(Example.Create(cat.Mate))
.List();

Criteria Queries

NHibernate 1.0.2 94

Chapter 13. Native SQL Queries
You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as the CONNECT keyword in Oracle. This also allows for a cleaner migration
path from a direct SQL/ADO.NET based application to NHibernate.

13.1. Creating a SQL based IQuery

SQL queries are exposed through the same IQuery interface, just like ordinary HQL queries. The only differ-
ence is the use of ISession.CreateSQLQuery().

IQuery sqlQuery = sess.CreateSQLQuery("select {cat.*} from cats {cat}", "cat", typeof(Cat));
sqlQuery.SetMaxResults(50);
IList cats = sqlQuery.List();

The three parameters provided to CreateSQLQuery() are:

• the SQL query string

• a table alias name

• the persistent class returned by the query

The alias name is used inside the SQL string to refer to the properties of the mapped class (in this case Cat).
You may retrieve multiple objects per row by supplying a String array of alias names and a System.Type array
of corresponding classes.

13.2. Alias and property references

The {cat.*} notation used above is a shorthand for "all properties". You may even list the properties explicity,
but you must let NHibernate provide SQL column aliases for each property. The placeholders for these column
aliases are the property name qualified by the table alias. In the following example, we retrieve Cats from a dif-
ferent table (cat_log) to the one declared in the mapping metadata. Notice that we may even use the property
aliases in the where clause.

string sql = "select cat.originalId as {cat.Id}, "
+ " cat.mateid as {cat.Mate}, cat.sex as {cat.Sex}, "
+ " cat.weight*10 as {cat.Weight}, cat.name as {cat.Name}"
+ " from cat_log cat where {cat.Mate} = :catId"

IList loggedCats = sess.CreateSQLQuery(sql, "cat", typeof(Cat))
.SetInt64("catId", catId)
.List();

Note: if you list each property explicitly, you must include all properties of the class and its subclasses!

13.3. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query.

IList people = sess.GetNamedQuery("mySqlQuery")

NHibernate 1.0.2 95

.SetMaxResults(50)

.List();

<sql-query name="mySqlQuery">
<return alias="person" class="Eg.Person, Eg"/>
SELECT {person}.NAME AS {person.Name},

{person}.AGE AS {person.Age},
{person}.SEX AS {person.Sex}

FROM PERSON {person} WHERE {person}.NAME LIKE 'Hiber%'
</sql-query>

Native SQL Queries

NHibernate 1.0.2 96

Chapter 14. Improving performance

14.1. Understanding Collection performance

We've already spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

14.1.1. Taxonomy

NHibernate defines three basic kinds of collections:

• collections of values

• one to many associations

• many to many associations

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relational structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by NHibernate to
update or delete collection rows. This suggests the following classification:

• indexed collections

• sets

• bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <index> columns.
In this case collection updates are usually extremely efficient - the primary key may be efficiently indexed and
a particular row may be efficiently located when NHibernate tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare all columns as not-

null="true".)

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. NHibernate has no way of distinguishing between duplicate rows. NHibernate resolves this
problem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This
might be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It still reflects how NHibernate "locates" in-
dividual rows of the collection.)

14.1.2. Lists, maps and sets are the most efficient collections to update

NHibernate 1.0.2 97

From the discussion above, it should be clear that indexed collections and (usually) sets allow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of an ISet, NHibernate doesn't ever UPDATE a row when an
element is "changed". Changes to an ISet always work via INSERT and DELETE (of individual rows). Once
again, this consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and sets are the most performant
collection types. (With the caveat that a set might be less efficient for some collections of values.)

Sets are expected to be the most common kind of collection in NHibernate applications.

There is an undocumented feature in this release of NHibernate. The <idbag> mapping implements bag se-
mantics for a collection of values or a many to many association and is more efficient that any other style of
collection in this case!

14.1.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and also lists) are much more per-
formant than sets. For a collection with inverse="true" (the standard bidirectional one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
This is because IList.Add() or IList.AddRange() must always succeed for a bag or IList (unlike a Set).
This can make the following common code much faster.

Parent p = (Parent) sess.Load(typeof(Parent), id);
Child c = new Child();
c.Parent = p;
p.Children.Add(c); //no need to fetch the collection!
sess.Flush();

14.1.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. NHibernate isn't completly
stupid, so it knows not to do that in the case of an newly-empty collection (if you called list.Clear(), for ex-
ample). In this case, NHibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. NHibernate will
issue one INSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed

• delete eighteen rows one by one and then insert three rows

• remove the whole collection (in one SQL DELETE) and insert all five current elements (one by one)

NHibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for NHibernate to be that smart; such behaviour might confuse database triggers, etc.)

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be

Improving performance

NHibernate 1.0.2 98

very useful and powerful from time to time.

We have already shown how you can use lazy initialization for persistent collections in the chapter about col-
lection mappings. A similar effect is achievable for ordinary object references, using proxies. We have also
mentioned how NHibernate caches persistent objects at the level of an ISession. More aggressive caching
strategies may be configured upon a class-by-class basis.

In the next section, we show you how to use these features, which may be used to achieve much higher per-
formance, where necessary.

14.2. Proxies for Lazy Initialization

NHibernate implements lazy initializing proxies for persistent objects using runtime IL generation (via the ex-
cellent Castle.DynamicProxy library).

The mapping file declares a class or interface to use as the proxy interface for that class. The recommended ap-
proach is to specify the class itself:

<class name="Eg.Order" proxy="Eg.Order">

The runtime type of the proxies will be a subclass of Order. Note that the proxied class must implement a de-
fault constructor with at least protected visibility and that all methods, properties and events of the class should
be declared virtual.

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<class name="Eg.Cat" proxy="Eg.Cat">
......
<subclass name="Eg.DomesticCat" proxy="Eg.DomesticCat">

.....
</subclass>

</class>

Firstly, instances of Cat will never be castable to DomesticCat, even if the underlying instance is an instance of
DomesticCat.

Cat cat = (Cat) session.Load(typeof(Cat), id); // instantiate a proxy (does not hit the db)
if (cat.IsDomesticCat) // hit the db to initialize the proxy
{

DomesticCat dc = (DomesticCat) cat; // Error!
....

}

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.Load(typeof(Cat), id); // instantiate a Cat proxy
DomesticCat dc =

(DomesticCat) session.Load(typeof(DomesticCat), id); // required new DomesticCat proxy!
Console.Out.WriteLine(cat==dc); // false

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

cat.Weight = 11.0; // hit the db to initialize the proxy
Console.Out.WriteLine(dc.Weight); // 11.0

Improving performance

NHibernate 1.0.2 99

Third, you may not use a proxy for a sealed class or a class with any sealed or non-virtual methods.

Finally, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy class is an actual subclass of the
persistent class.

These problems are all due to fundamental limitations in .NET single inheritance model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
You should specify these interfaces in the mapping file. eg.

<class name="Eg.Cat" proxy="Eg.ICat">
......
<subclass name="Eg.DomesticCat" proxy="Eg.IDomesticCat">

.....
</subclass>

</class>

where Cat implements the interface ICat and DomesticCat implements the interface IDomesticCat. Then prox-
ies for instances of Cat and DomesticCat may be returned by Load() or Enumerable(). (Note that Find() does
not return proxies.)

ICat cat = (ICat) session.Load(typeof(Cat), catid);
IEnumerable en = session.Enumerable("from cat in class Eg.Cat where cat.Name='fritz'");
en.MoveNext();
ICat fritz = (ICat) en.Current;

Relationships are also lazily initialized. This means you must declare any properties to be of type ICat, not Cat.

Certain operations do not require proxy initialization

• Equals(), if the persistent class does not override Equals()

• GetHashCode(), if the persistent class does not override GetHashCode()

• The identifier getter method (if the class does not use a custom accessor for the identifier property)

NHibernate will detect persistent classes that override Equals() or GetHashCode().

Exceptions that occur while initializing a proxy are wrapped in a LazyInitializationException.

Sometimes we need to ensure that a proxy or collection is initialized before closing the ISession. Of course,
we can alway force initialization by calling cat.Sex or cat.Kittens.Count, for example. But that is confusing
to readers of the code and is not convenient for generic code. The static methods NHibernateUt-

il.Initialize() and NHibernateUtil.IsInitialized() provide the application with a convenient way of
working with lazyily initialized collections or proxies. NHibernateUtil.Initialize(cat) will force the ini-
tialization of a proxy, cat, as long as its ISession is still open. NHibernateUtil.Initialize(cat.Kittens)

has a similar effect for the collection of kittens.

14.3. Using batch fetching

NHibernate can make efficient use of batch fetching, that is, NHibernate can load several uninitialized proxies
if one proxy is accessed. Batch fetching is an optimization for the lazy loading strategy. There are two ways
you can tune batch fetching: on the class and the collection level.

Batch fetching for classes/entities is easier to understand. Imagine you have the following situation at runtime:
You have 25 Cat instances loaded in an ISession, each Cat has a reference to its Owner, a Person. The Person

class is mapped with a proxy, lazy="true". If you now iterate through all cats and get the Owner of each,

Improving performance

NHibernate 1.0.2 100

NHibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. You can tune this be-
havior by specifying a batch-size in the mapping of Person:

<class name="Person" lazy="true" batch-size="10">...</class>

NHibernate will now execute only three queries, the pattern is 10, 10, 5. You can see that batch fetching is a
blind guess, as far as performance optimization goes, it depends on the number of unitilized proxies in a partic-
ular ISession.

You may also enable batch fetching of collections. For example, if each Person has a lazy collection of Cats,
and 10 persons are currently loaded in the ISesssion, iterating through all persons will generate 10 SELECTs,
one for every read of Person.Cats. If you enable batch fetching for the Cats collection in the mapping of Per-
son, NHibernate can pre-fetch collections:

<class name="Person">
<set name="Cats" lazy="true" batch-size="3">

...
</set>

</class>

With a batch-size of 3, NHibernate will load 3, 3, 3, 1 collections in 4 SELECTs. Again, the value of the attrib-
ute depends on the expected number of uninitialized collections in a particular ISession.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typical bill-
of-materials pattern.

14.4. The Second Level Cache

A NHibernate ISession is a transaction-level cache of persistent data. It is possible to configure a cluster or
process-level (ISessionFactory-level) cache on a class-by-class and collection-by-collection basis. You may
even plug in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by
another application (though they may be configured to regularly expire cached data). In NHibernate 1.0 second
level cache does not work correctly in combination with distributed transactions.

By default, NHibernate uses HashtableCache for process-level caching. You may choose a different imple-
mentation by specifying the name of a class that implements NHibernate.Cache.ICacheProvider using the
property hibernate.cache.provider_class.

Table 14.1. Cache Providers

Cache Provider class Type Cluster Safe Query Cache
Supported

Hashtable
(not intended
for produc-
tion use)

NHibern-

ate.Cache.HashtableCacheProvider

memory yes

ASP.NET
Cache
(System.Web.
Cache)

NHibern-

ate.Caches.SysCache.SysCacheProvider,

NHibernate.Caches.SysCache

memory yes

Prevalence
Cache

NHibern-

ate.Caches.Prevalence.PrevalenceCacheP

memory, disk yes

Improving performance

NHibernate 1.0.2 101

Cache Provider class Type Cluster Safe Query Cache
Supported

rovider, NHibernate.Caches.Prevalence

14.4.1. Cache mappings

The <cache> element of a class or collection mapping has the following form:

<cache
usage="read-write|nonstrict-read-write|read-only" (1)

/>

(1) usage specifies the caching strategy: read-write, nonstrict-read-write or read-only

Alternatively (preferrably?), you may specify <class-cache> and <collection-cache> elements in hibern-

ate.cfg.xml.

The usage attribute specifies a cache concurrency strategy.

14.4.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, a read-only cache may be
used. This is the simplest and best performing strategy. Its even perfectly safe for use in a cluster.

<class name="Eg.Immutable" mutable="false">
<cache usage="read-only"/>
....

</class>

14.4.3. Strategy: read/write

If the application needs to update data, a read-write cache might be appropriate. This cache strategy should
never be used if serializable transaction isolation level is required. If you wish to use this strategy in a cluster,
you should ensure that the underlying cache implementation supports locking. The built-in cache providers do
not.

<class name="eg.Cat" >
<cache usage="read-write"/>
....
<set name="kittens" ... >

<cache usage="read-write"/>
....

</set>
</class>

14.4.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, a nonstrict-

read-write cache might be appropriate.

The following table shows which providers are compatible with which concurrency strategies.

Improving performance

NHibernate 1.0.2 102

Table 14.2. Cache Concurrency Strategy Support

Cache read-only nonstrict-
read-write

read-write

Hashtable (not in-
tended for produc-
tion use)

yes yes yes

SysCache yes yes yes

PrevalenceCache yes yes yes

Refer to Chapter 20, NHibernate.Caches for more details.

14.5. Managing the ISession Cache

Whenever you pass an object to Save(), Update() or SaveOrUpdate() and whenever you retrieve an object us-
ing Load(), Find(), Enumerable(), or Filter(), that object is added to the internal cache of the ISession.
When Flush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, the Evict() method may be used to remove the object and its collections from the cache.

IEnumerable cats = sess.Enumerable("from Eg.Cat as cat"); //a huge result set
foreach(Cat cat in cats)
{

DoSomethingWithACat(cat);
sess.Evict(cat);

}

NHibernate will evict associated entities automatically if the association is mapped with cascade="all" or
cascade="all-delete-orphan".

The ISession also provides a Contains() method to determine if an instance belongs to the session cache.

To completely evict all objects from the session cache, call ISession.Clear()

For the second-level cache, there are methods defined on ISessionFactory for evicting the cached state of an
instance, entire class, collection instance or entire collection role.

14.6. The Query Cache

Query result sets may also be cached. This is only useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it by setting the property hibern-

ate.cache.use_query_cache=true. This causes the creation of two cache regions - one holding cached query
result sets (NHibernate.Cache.IQueryCache), the other holding timestamps of most recent updates to queried
tables (NHibernate.Cache.UpdateTimestampsCache). Note that the query cache does not cache the state of any
entities in the result set; it caches only identifier values and results of value type. So the query cache is usually
used in conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
IQuery.SetCacheable(true). This call allows the query to look for existing cache results or add its results to

Improving performance

NHibernate 1.0.2 103

the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for a particular query by calling IQuery.SetCacheRegion().

IList blogs = sess.CreateQuery("from Blog blog where blog.Blogger = :blogger")
.SetEntity("blogger", blogger)
.SetMaxResults(15)
.SetCacheable(true)
.SetCacheRegion("frontpages")
.List();

If the query should force a refresh of its query cache region, you may call IQuery.SetForceCacheRefresh() to
true. This is particularly useful in cases where underlying data may have been updated via a seperate process
(i.e., not modified through NHibernate) and allows the application to selectively refresh the query cache regions
based on its knowledge of those events. This is an alternative to eviction of a query cache region. If you need
fine-grained refresh control for many queries, use this function instead of a new region for each query.

Improving performance

NHibernate 1.0.2 104

Chapter 15. Toolset Guide
Roundtrip engineering with NHibernate is possible using a set of commandline tools maintained as part of the
NHibernate project, along with NHibernate support built into various code generation tools (MyGeneration,
CodeSmith, ObjectMapper, AndroMDA).

The NHibernate main package comes bundled with the most important tool (it can even be used from "inside"
NHibernate on-the-fly):

• DDL schema generation from a mapping file (aka SchemaExport, hbm2ddl)

Other tools directly provided by the NHibernate project are delivered with a separate package, NHibernateCon-
trib. This package includes tools for the following tasks:

• C# source generation from a mapping file (aka hbm2net)

• mapping file generation from .NET classes marked with attributes (NHibernate.Mapping.Attributes, or
NHMA for short)

Third party tools with NHibernate support are:

• CodeSmith, MyGeneration, and ObjectMapper (mapping file generation from an existing database schema)

• AndroMDA (MDA (Model-Driven Architecture) approach generating code for persistent classes from
UML diagrams and their XML/XMI representation)

These 3rd party tools are not documented in this reference. Please refer to the NHibernate website for up-
to-date information.

15.1. Schema Generation

The generated schema includes referential integrity constraints (primary and foreign keys) for entity and collec-
tion tables. Tables and sequences are also created for mapped identifier generators.

You must specify a SQL Dialect via the hibernate.dialect property when using this tool.

15.1.1. Customizing the schema

Many NHibernate mapping elements define an optional attribute named length. You may set the length of a
column with this attribute. (Or, for numeric/decimal data types, the precision.)

Some tags also accept a not-null attribute (for generating a NOT NULL constraint on table columns) and a
unique attribute (for generating UNIQUE constraint on table columns).

Some tags accept an index attribute for specifying the name of an index for that column. A unique-key attrib-
ute can be used to group columns in a single unit key constraint. Currently, the specified value of the unique-

key attribute is not used to name the constraint, only to group the columns in the mapping file.

Examples:

<property name="Foo" type="String" length="64" not-null="true"/>

NHibernate 1.0.2 105

<many-to-one name="Bar" foreign-key="fk_foo_bar" not-null="true"/>

<element column="serial_number" type="Int64" not-null="true" unique="true"/>

Alternatively, these elements also accept a child <column> element. This is particularly useful for multi-column
types:

<property name="Foo" type="String">
<column name="foo" length="64" not-null="true" sql-type="text"/>

</property>

<property name="Bar" type="My.CustomTypes.MultiColumnType, My.CustomTypes"/>
<column name="fee" not-null="true" index="bar_idx"/>
<column name="fi" not-null="true" index="bar_idx"/>
<column name="fo" not-null="true" index="bar_idx"/>

</property>

The sql-type attribute allows the user to override the default mapping of NHibernate type to SQL datatype.

The check attribute allows you to specify a check constraint.

<property name="Foo" type="Int32">
<column name="foo" check="foo > 10"/>

</property>

<class name="Foo" table="foos" check="bar < 100.0">
...
<property name="Bar" type="Single"/>

</class>

Table 15.1. Summary

Attribute Values Interpretation

length number column length/decimal precision

not-null true|false specfies that the column should be non-nullable

unique true|false specifies that the column should have a unique constraint

index index_name specifies the name of a (multi-column) index

unique-key unique_key_name specifies the name of a multi-column unique constraint

foreign-key foreign_key_name specifies the name of the foreign key constraint generated
for an association, use it on <one-to-one>, <many-to-one>,
<key>, and <many-to-many> mapping elements. Note that
inverse="true" sides will not be considered by SchemaEx-

port.

sql-type column_type overrides the default column type (attribute of <column>

element only)

check SQL expression create an SQL check constraint on either column or table

15.1.2. Running the tool

Toolset Guide

NHibernate 1.0.2 106

The SchemaExport tool writes a DDL script to standard out and/or executes the DDL statements.

java -cp hibernate_classpaths net.sf.hibernate.tool.hbm2ddl.SchemaExport options mapping_files

Table 15.2. SchemaExport Command Line Options

Option Description

--quiet don't output the script to stdout

--drop only drop the tables

--text don't export to the database

--output=my_schema.ddl output the ddl script to a file

--config=hibernate.cfg.xml read Hibernate configuration from an XML file

--properties=hibernate.properties read database properties from a file

--format format the generated SQL nicely in the script

--delimiter=x set an end of line delimiter for the script

You may even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport(cfg).create(false, true);

15.1.3. Properties

Database properties may be specified

• as system properties with -D<property>
• in hibernate.properties

• in a named properties file with --properties

The needed properties are:

Table 15.3. SchemaExport Connection Properties

Property Name Description

hibernate.connection.driver_class jdbc driver class

hibernate.connection.url jdbc url

hibernate.connection.username database user

hibernate.connection.password user password

hibernate.dialect dialect

15.1.4. Using Ant

Toolset Guide

NHibernate 1.0.2 107

You can call SchemaExport from your Ant build script:

<target name="schemaexport">
<taskdef name="schemaexport"

classname="net.sf.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="class.path"/>

<schemaexport
properties="hibernate.properties"
quiet="no"
text="no"
drop="no"
delimiter=";"
output="schema-export.sql">
<fileset dir="src">

<include name="**/*.hbm.xml"/>
</fileset>

</schemaexport>
</target>

If you don't specify properties or a config file, the SchemaExportTask will try to use normal Ant project
properties instead. In other words, if you don't want or need an external configuration or properties file, you
may put hibernate.* configuration properties in your build.xml or build.properties.

15.1.5. Incremental schema updates

The SchemaUpdate tool will update an existing schema with "incremental" changes. Note that SchemaUpdate
depends heavily upon the JDBC metadata API, so it will not work with all JDBC drivers.

java -cp hibernate_classpaths net.sf.hibernate.tool.hbm2ddl.SchemaUpdate options mapping_files

Table 15.4. SchemaUpdate Command Line Options

Option Description

--quiet don't output the script to stdout

--properties=hibernate.properties read database properties from a file

You may embed SchemaUpdate in your application:

Configuration cfg =;
new SchemaUpdate(cfg).execute(false);

15.1.6. Using Ant for incremental schema updates

You can call SchemaUpdate from the Ant script:

<target name="schemaupdate">
<taskdef name="schemaupdate"

classname="net.sf.hibernate.tool.hbm2ddl.SchemaUpdateTask"
classpathref="class.path"/>

<schemaupdate
properties="hibernate.properties"
quiet="no">
<fileset dir="src">

<include name="**/*.hbm.xml"/>
</fileset>

Toolset Guide

NHibernate 1.0.2 108

</schemaupdate>
</target>

15.2. Code Generation

The Hibernate code generator may be used to generate skeletal Java implementation classes from a Hibernate
mapping file. This tool is included in the Hibernate Extensions package (a seperate download).

hbm2java parses the mapping files and generates fully working Java source files from these. Thus with
hbm2java one could "just" provide the .hbm files, and then don't worry about hand-writing/coding the Java files.

java -cp hibernate_classpaths net.sf.hibernate.tool.hbm2java.CodeGenerator options mapping_files

Table 15.5. Code Generator Command Line Options

Option Description

--output=output_dir root directory for generated code

--config=config_file optional file for configuring hbm2java

15.2.1. The config file (optional)

The config file provides for a way to specify multiple "renderers" for the source code and to declare <meta> at-
tributes that is "global" in scope. See more about this in the <meta> attribute section.

<codegen>
<meta attribute="implements">codegen.test.IAuditable</meta>
<generate renderer="net.sf.hibernate.tool.hbm2java.BasicRenderer"/>
<generate

package="autofinders.only"
suffix="Finder"
renderer="net.sf.hibernate.tool.hbm2java.FinderRenderer"/>

</codegen>

This config file declares a global meta attribute "implements" and specify two renderers, the default one
(BasicRenderer) and a renderer that generates Finder's (See more in "Basic Finder generation" below).

The second renderer is provided with a package and suffix attribute.

The package attribute specifies that the generated source files from this renderer should be placed here instead
of the package scope specified in the .hbm files.

The suffix attribute specifies the suffix for generated files. E.g. here a file named Foo.java would be FooFind-

er.java instead.

It is also possible to send down arbitrary parameters to the renders by adding <param> attributes to the
<generate> elements.

hbm2java currently has support for one such parameter, namely generate-concrete-empty-classes which in-
forms the BasicRenderer to only generate empty concrete classes that extends a base class for all your classes.
The following config.xml example illustrate this feature

Toolset Guide

NHibernate 1.0.2 109

<codegen>
<generate prefix="Base" renderer="net.sf.hibernate.tool.hbm2java.BasicRenderer"/>
<generate renderer="net.sf.hibernate.tool.hbm2java.BasicRenderer">
<param name="generate-concrete-empty-classes">true</param>
<param name="baseclass-prefix">Base</param>

</generate>
</codegen>

Notice that this config.xml configure 2 (two) renderers. One that generates the Base classes, and a second one
that just generates empty concrete classes.

15.2.2. The meta attribute

The <meta> tag is a simple way of annotating the hbm.xml with information, so tools have a natural place to
store/read information that is not directly related to the Hibernate core.

You can use the <meta> tag to tell hbm2java to only generate "protected" setters, have classes always imple-
ment a certain set of interfaces or even have them extend a certain base class and even more.

The following example:

<class name="Person">
<meta attribute="class-description">

Javadoc for the Person class
@author Frodo

</meta>
<meta attribute="implements">IAuditable</meta>
<id name="id" type="long">

<meta attribute="scope-set">protected</meta>
<generator class="increment"/>

</id>
<property name="name" type="string">

<meta attribute="field-description">The name of the person</meta>
</property>

</class>

will produce something like the following (code shortened for better understanding). Notice the Javadoc com-
ment and the protected set methods:

// default package

import java.io.Serializable;
import org.apache.commons.lang.builder.EqualsBuilder;
import org.apache.commons.lang.builder.HashCodeBuilder;
import org.apache.commons.lang.builder.ToStringBuilder;

/**
* Javadoc for the Person class
* @author Frodo
*
*/

public class Person implements Serializable, IAuditable {

/** identifier field */
public Long id;

/** nullable persistent field */
public String name;

/** full constructor */
public Person(java.lang.String name) {

this.name = name;
}

Toolset Guide

NHibernate 1.0.2 110

/** default constructor */
public Person() {
}

public java.lang.Long getId() {
return this.id;

}

protected void setId(java.lang.Long id) {
this.id = id;

}

/**
* The name of the person
*/
public java.lang.String getName() {

return this.name;
}

public void setName(java.lang.String name) {
this.name = name;

}

}

Table 15.6. Supported meta tags

Attribute Description

class-description inserted into the javadoc for classes

field-description inserted into the javadoc for fields/properties

interface If true an interface is generated instead of an class.

implements interface the class should implement

extends class the class should extend (ignored for subclasses)

generated-class overrule the name of the actual class generated

scope-class scope for class

scope-set scope for setter method

scope-get scope for getter method

scope-field scope for actual field

use-in-tostring include this property in the toString()

implement-equals include a equals() and hashCode() method in this class.

use-in-equals include this property in the equals() and hashCode() meth-
od.

bound add propertyChangeListener support for a property

constrained bound + vetoChangeListener support for a property

gen-property property will not be generated if false (use with care)

property-type Overrides the default type of property. Use this with any tag's
to specify the concrete type instead of just Object.

Toolset Guide

NHibernate 1.0.2 111

Attribute Description

class-code Extra code that will inserted at the end of the class

extra-import Extra import that will inserted at the end of all other imports

finder-method see "Basic finder generator" below

session-method see "Basic finder generator" below

Attributes declared via the <meta> tag are per default "inherited" inside an hbm.xml file.

What does that mean? It means that if you e.g want to have all your classes implement IAuditable then you
just add an <meta attribute="implements">IAuditable</meta> in the top of the hbm.xml file, just after
<hibernate-mapping>. Now all classes defined in that hbm.xml file will implement IAuditable! (Except if a
class also has an "implements" meta attribute, because local specified meta tags always overrules/replaces any
inherited meta tags).

Note: This applies to all <meta>-tags. Thus it can also e.g. be used to specify that all fields should be declare
protected, instead of the default private. This is done by adding <meta attrib-

ute="scope-field">protected</meta> at e.g. just under the <class> tag and all fields of that class will be
protected.

To avoid having a <meta>-tag inherited then you can simply specify inherit="false" for the attribute, e.g.
<meta attribute="scope-class" inherit="false">public abstract</meta> will restrict the "class-scope"
to the current class, not the subclasses.

15.2.3. Basic finder generator

It is now possible to have hbm2java generate basic finders for Hibernate properties. This requires two things in
the hbm.xml files.

The first is an indication of which fields you want to generate finders for. You indicate that with a meta block
inside a property tag such as:

<property name="name" column="name" type="string">
<meta attribute="finder-method">findByName</meta>

</property>

The finder method name will be the text enclosed in the meta tags.

The second is to create a config file for hbm2java of the format:

<codegen>
<generate renderer="net.sf.hibernate.tool.hbm2java.BasicRenderer"/>
<generate suffix="Finder" renderer="net.sf.hibernate.tool.hbm2java.FinderRenderer"/>

</codegen>

And then use the param to hbm2java --config=xxx.xml where xxx.xml is the config file you just created.

An optional parameter is meta tag at the class level of the format:

<meta attribute="session-method">
com.whatever.SessionTable.getSessionTable().getSession();

</meta>

Toolset Guide

NHibernate 1.0.2 112

Which would be the way in which you get sessions if you use the Thread Local Session pattern (documented in
the Design Patterns area of the Hibernate website).

15.2.4. Velocity based renderer/generator

It is now possible to use velocity as an alternative rendering mechanism. The follwing config.xml shows how to
configure hbm2java to use its velocity renderer.

<codegen>
<generate renderer="net.sf.hibernate.tool.hbm2java.VelocityRenderer">
<param name="template">pojo.vm</param>
</generate>
</codegen>

The parameter named template is a resource path to the velocity macro file you want to use. This file must be
available via the classpath for hbm2java. Thus remember to add the directory where pojo.vm is located to your
ant task or shell script. (The default location is ./tools/src/velocity)

Be aware that the current pojo.vm generates only the most basic parts of the java beans. It is not as complete
and feature rich as the default renderer - primarily a lot of the meta tags are not supported.

15.3. Mapping File Generation

A skeletal mapping file may be generated from compiled persistent classes using a command line utility called
MapGenerator. This utility is part of the Hibernate Extensions package.

The Hibernate mapping generator provides a mechanism to produce mappings from compiled classes. It uses
Java reflection to find properties and uses heuristics to guess an appropriate mapping from the property type.
The generated mapping is intended to be a starting point only. There is no way to produce a full Hibernate map-
ping without extra input from the user. However, the tool does take away some of the repetitive "grunt" work
involved in producing a mapping.

Classes are added to the mapping one at a time. The tool will reject classes that it judges are are not Hibernate
persistable.

To be Hibernate persistable a class

• must not be a primitive type
• must not be an array
• must not be an interface
• must not be a nested class
• must have a default (zero argument) constructor.

Note that interfaces and nested classes actually are persistable by Hibernate, but this would not usually be in-
tended by the user.

MapGenerator will climb the superclass chain of all added classes attempting to add as many Hibernate persist-
able superclasses as possible to the same database table. The search stops as soon as a property is found that has
a name appearing on a list of candidate UID names.

The default list of candidate UID property names is: uid, UID, id, ID, key, KEY, pk, PK.

Properties are discovered when there are two methods in the class, a setter and a getter, where the type of the

Toolset Guide

NHibernate 1.0.2 113

setter's single argument is the same as the return type of the zero argument getter, and the setter returns void.
Furthermore, the setter's name must start with the string set and either the getter's name starts with get or the
getter's name starts with is and the type of the property is boolean. In either case, the remainder of their names
must match. This matching portion is the name of the property, except that the initial character of the property
name is made lower case if the second letter is lower case.

The rules for determining the database type of each property are as follows:

1. If the Java type is Hibernate.basic(), then the property is a simple column of that type.
2. For hibernate.type.Type custom types and PersistentEnum a simple column is used as well.
3. If the property type is an array, then a Hibernate array is used, and MapGenerator attempts to reflect on the

array element type.
4. If the property has type java.util.List, java.util.Map, or java.util.Set, then the corresponding Hi-

bernate types are used, but MapGenerator cannot further process the insides of these types.
5. If the property's type is any other class, MapGenerator defers the decision on the database representation

until all classes have been processed. At this point, if the class was discovered through the superclass
search described above, then the property is an many-to-one association. If the class has any properties,
then it is a component. Otherwise it is serializable, or not persistable.

15.3.1. Running the tool

The tool writes XML mappings to standard out and/or to a file.

When invoking the tool you must place your compiled classes on the classpath.

java -cp hibernate_and_your_class_classpaths net.sf.hibernate.tool.class2hbm.MapGenerator options
and classnames

There are two modes of operation: command line or interactive.

The interactive mode is selected by providing the single command line argument --interact. This mode
provides a prompt response console. Using it you can set the UID property name for each class using the
uid=XXX command where XXX is the UID property name. Other command alternatives are simply a fully quali-
fied class name, or the command done which emits the XML and terminates.

In command line mode the arguments are the options below interspersed with fully qualified class names of the
classes to be processed. Most of the options are meant to be used multiple times; each use affects subsequently
added classes.

Table 15.7. MapGenerator Command Line Options

Option Description

--quiet don't output the O-R Mapping to stdout

--setUID=uid set the list of candidate UIDs to the singleton uid

--addUID=uid add uid to the front of the list of candidate UIDs

--select=mode mode use select mode mode(e.g., distinct or all) for subsequently added
classes

--depth=<small-int> limit the depth of component data recursion for subsequently added
classes

Toolset Guide

NHibernate 1.0.2 114

Option Description

--output=my_mapping.xml output the O-R Mapping to a file

full.class.Name add the class to the mapping

--abstract=full.class.Name see below

The abstract switch directs the map generator tool to ignore specific super classes so that classes with common
inheritance are not mapped to one large table. For instance, consider these class hierarchies:

Animal-->Mammal-->Human

Animal-->Mammal-->Marsupial-->Kangaroo

If the --abstractswitch is not used, all classes will be mapped as subclasses of Animal, resulting in one large
table containing all the properties of all the classes plus a discriminator column to indicate which subclass is ac-
tually stored. If Mammal is marked as abstract, Human and Marsupial will be mapped to separate <class> de-
clarations and stored in separate tables. Kangaroo will still be a subclass of Marsupial unless Marsupial is also
marked as abstract.

Toolset Guide

NHibernate 1.0.2 115

Chapter 16. Example: Parent/Child
One of the very first things that new users try to do with NHibernate is to model a parent / child type relation-
ship. There are two different approaches to this. For various reasons the most convenient approach, especially
for new users, is to model both Parent and Child as entity classes with a <one-to-many> association from Par-

ent to Child. (The alternative approach is to declare the Child as a <composite-element>.) Now, it turns out
that default semantics of a one to many association (in NHibernate) are much less close to the usual semantics
of a parent / child relationship than those of a composite element mapping. We will explain how to use a bid-
irectional one to many association with cascades to model a parent / child relationship efficiently and eleg-
antly. It's not at all difficult!

16.1. A note about collections

NHibernate collections are considered to be a logical part of their owning entity; never of the contained entities.
This is a crucial distinction! It has the following consequences:

• When we remove / add an object from / to a collection, the version number of the collection owner is incre-
mented.

• If an object that was removed from a collection is an instance of a value type (eg, a composite element), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

• On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behavior is completely consistent - a change to the internal state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behavior is that adding an entity to a collection merely creates a link between the two entit-
ies, while removing it removes the link. This is very appropriate for all sorts of cases. Where it is not appropri-
ate at all is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

16.2. Bidirectional one-to-many

Suppose we start with a simple <one-to-many> association from Parent to Child.

<set name="Children">
<key column="parent_id" />
<one-to-many class="Child" />

</set>

If we were to execute the following code

Parent p =;
Child c = new Child();
p.Children.Add(c);
session.Save(c);
session.Flush();

NHibernate would issue two SQL statements:

NHibernate 1.0.2 116

• an INSERT to create the record for c

• an UPDATE to create the link from p to c

This is not only inefficient, but also violates any NOT NULL constraint on the parent_id column.

The underlying cause is that the link (the foreign key parent_id) from p to c is not considered part of the state
of the Child object and is therefore not created in the INSERT. So the solution is to make the link part of the
Child mapping.

<many-to-one name="Parent" column="parent_id" not-null="true"/>

(We also need to add the Parent property to the Child class.)

Now that the Child entity is managing the state of the link, we tell the collection not to update the link. We use
the inverse attribute.

<set name="Children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

The following code would be used to add a new Child.

Parent p = (Parent) session.Load(typeof(Parent), pid);
Child c = new Child();
c.Parent = p;
p.Children.Add(c);
session.Save(c);
session.Flush();

And now, only one SQL INSERT would be issued!

To tighten things up a bit, we could create an AddChild() method of Parent.

public void AddChild(Child c)
{

c.Parent = this;
children.Add(c);

}

Now, the code to add a Child looks like

Parent p = (Parent) session.Load(typeof(Parent), pid);
Child c = new Child();
p.AddChild(c);
session.Save(c);
session.Flush();

16.3. Cascading lifecycle

The explicit call to Save() is still annoying. We will address this by using cascades.

<set name="Children" inverse="true" cascade="all">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

Example: Parent/Child

NHibernate 1.0.2 117

This simplifies the code above to

Parent p = (Parent) session.Load(typeof(Parent), pid);
Child c = new Child();
p.AddChild(c);
session.Flush();

Similarly, we don't need to iterate over the children when saving or deleting a Parent. The following removes p
and all its children from the database.

Parent p = (Parent) session.Load(typeof(Parent), pid);
session.Delete(p);
session.Flush();

However, this code

Parent p = (Parent) session.Load(typeof(Parent), pid);
// Get one child out of the set
IEnumerator childEnumerator = p.Children.GetEnumerator();
childEnumerator.MoveNext();
Child c = (Child) childEnumerator.Current;

p.Children.Remove(c);
c.Parent = null;
session.Flush();

will not remove c from the database; it will only remove the link to p (and cause a NOT NULL constraint viola-
tion, in this case). You need to explicitly Delete() the Child.

Parent p = (Parent) session.Load(typeof(Parent), pid);
// Get one child out of the set
IEnumerator childEnumerator = p.Children.GetEnumerator();
childEnumerator.MoveNext();
Child c = (Child) childEnumerator.Current;

p.Children.Remove(c);
session.Delete(c);
session.Flush();

Now, in our case, a Child can't really exist without its parent. So if we remove a Child from the collection, we
really do want it to be deleted. For this, we must use cascade="all-delete-orphan".

<set name="Children" inverse="true" cascade="all-delete-orphan">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

Note: even though the collection mapping specifies inverse="true", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply set its parent.

16.4. Using cascading Update()

Suppose we loaded up a Parent in one ISession, made some changes in a UI action and wish to persist these
changes in a new ISession (by calling Update()). The Parent will contain a collection of children and, since
cascading update is enabled, NHibernate needs to know which children are newly instantiated and which rep-
resent existing rows in the database. Let's assume that both Parent and Child have (synthetic) identifier proper-
ties of type long. NHibernate will use the identifier property value to determine which of the children are new.

Example: Parent/Child

NHibernate 1.0.2 118

(You may also use the version or timestamp property, see Section 9.4.2, “Updating detached objects”.)

The unsaved-value attribute is used to specify the identifier value of a newly instantiated instance. In
NHibernate it is not necessary to specify unsaved-value explicitly.

The following code will update parent and child and insert newChild.

//parent and child were both loaded in a previous session
parent.AddChild(child);
Child newChild = new Child();
parent.AddChild(newChild);
session.Update(parent);
session.Flush();

Well, thats all very well for the case of a generated identifier, but what about assigned identifiers and composite
identifiers? This is more difficult, since unsaved-value can't distinguish between a newly instantiated object
(with an identifier assigned by the user) and an object loaded in a previous session. In these cases, you will
probably need to give NHibernate a hint; either

• define an unsaved-value on a <version> or <timestamp> property mapping for the class.

• set unsaved-value="none" and explicitly Save() newly instantiated children before calling Up-

date(parent)

• set unsaved-value="any" and explicitly Update() previously persistent children before calling Up-

date(parent)

null is the default unsaved-value for assigned identifiers, none is the default unsaved-value for composite
identifiers.

There is one further possibility. There is a new IInterceptor method named IsUnsaved() which lets the ap-
plication implement its own strategy for distinguishing newly instantiated objects. For example, you could
define a base class for your persistent classes.

public class Persistent
{

private bool _saved = false;

public void OnSave()
{

_saved=true;
}

public void OnLoad()
{

_saved=true;
}

......

public bool IsSaved
{

get { return _saved; }
}

}

(The saved property is non-persistent.) Now implement IsUnsaved(), along with OnLoad() and OnSave() as
follows.

public object IsUnsaved(object entity)
{

if (entity is Persistent)

Example: Parent/Child

NHibernate 1.0.2 119

{
return !((Persistent) entity).IsSaved;

}
else
{

return null;
}

}

public bool OnLoad(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is Persistent) ((Persistent) entity).OnLoad();
return false;

}

public boolean OnSave(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is Persistent) ((Persistent) entity).OnSave();
return false;

}

16.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out quite nicely. Most NHibernate applications use the parent / child pattern in many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case of
<composite-element> mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes: composite elements may not own collections,
and they should not be the child of any entity other than the unique parent. (However, they may have a surrog-
ate primary key, using an <idbag> mapping.)

Example: Parent/Child

NHibernate 1.0.2 120

Chapter 17. Example: Weblog Application

17.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-
ard parent/child relationship, but we will use an ordered bag, instead of a set.

using System;
using System.Collections;

namespace Eg
{

public class Blog
{

private long _id;
private string _name;
private IList _items;

public virtual long Id
{

get { return _id; }
set { _id = value; }

}

public virtual IList Items
{

get { return _items; }
set { _items = value; }

}

public virtual string Name
{

get { return _name; }
set { _name = value; }

}
}

}

using System;

namespace Eg
{

public class BlogItem
{

private long _id;
private DateTime _dateTime;
private string _text;
private string _title;
private Blog _blog;

public virtual Blog Blog
{

get { return _blog; }
set { _blog = value; }

}

public virtual DateTime DateTime
{

get { return _dateTime; }
set { _dateTime = value; }

}

public virtual long Id
{

get { return _id; }

NHibernate 1.0.2 121

set { _id = value; }
}

public virtual string Text
{

get { return _text; }
set { _text = value; }

}

public virtual string Title
{

get { return _title; }
set { _title = value; }

}
}

}

17.2. Hibernate Mappings

The XML mappings should now be quite straightforward.

<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"

assembly="Eg" namespace="Eg">

<class
name="Blog"
table="BLOGS"
lazy="true">

<id
name="Id"
column="BLOG_ID">

<generator class="native"/>

</id>

<property
name="Name"
column="NAME"
not-null="true"
unique="true"/>

<bag
name="Items"
inverse="true"
lazy="true"
order-by="DATE_TIME"
cascade="all">

<key column="BLOG_ID"/>
<one-to-many class="BlogItem"/>

</bag>

</class>

</hibernate-mapping>

<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"

assembly="Eg" namespace="Eg">

<class
name="BlogItem"

Example: Weblog Application

NHibernate 1.0.2 122

table="BLOG_ITEMS"
dynamic-update="true">

<id
name="Id"
column="BLOG_ITEM_ID">

<generator class="native"/>

</id>

<property
name="Title"
column="TITLE"
not-null="true"/>

<property
name="Text"
column="TEXT"
not-null="true"/>

<property
name="DateTime"
column="DATE_TIME"
not-null="true"/>

<many-to-one
name="Blog"
column="BLOG_ID"
not-null="true"/>

</class>

</hibernate-mapping>

17.3. NHibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using NHibernate.

using System;
using System.Collections;

using NHibernate.Tool.hbm2ddl;

namespace Eg
{

public class BlogMain
{

private ISessionFactory _sessions;

public void Configure()
{

_sessions = new Configuration()
.AddClass(typeof(Blog))
.AddClass(typeof(BlogItem))
.BuildSessionFactory();

}

public void ExportTables()
{

Configuration cfg = new Configuration()
.AddClass(typeof(Blog))
.AddClass(typeof(BlogItem));

new SchemaExport(cfg).create(true, true);
}

public Blog CreateBlog(string name)

Example: Weblog Application

NHibernate 1.0.2 123

{
Blog blog = new Blog();
blog.Name = name;
blog.Items = new ArrayList();

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

session.Save(blog);
tx.Commit();

}

return blog;
}

public BlogItem CreateBlogItem(Blog blog, string title, string text)
{

BlogItem item = new BlogItem();
item.Title = title;
item.Text = text;
item.Blog = blog;
item.DateTime = DateTime.Now;
blog.Items.Add(item);

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

session.Update(blog);
tx.Commit();

}

return item;
}

public BlogItem CreateBlogItem(long blogId, string title, string text)
{

BlogItem item = new BlogItem();
item.Title = title;
item.Text = text;
item.DateTime = DateTime.Now;

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

Blog blog = (Blog) session.Load(typeof(Blog), blogId);
item.Blog = blog;
blog.Items.Add(item);
tx.Commit();

}

return item;
}

public void UpdateBlogItem(BlogItem item, string text)
{

item.Text = text;

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

session.Update(item);
tx.Commit();

}
}

public void UpdateBlogItem(long itemId, string text)
{

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

BlogItem item = (BlogItem) session.Load(typeof(BlogItem), itemId);

Example: Weblog Application

NHibernate 1.0.2 124

item.Text = text;
tx.Commit();

}
}

public IList listAllBlogNamesAndItemCounts(int max)
{

IList result = null;

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

IQuery q = session.CreateQuery(
"select blog.id, blog.Name, count(blogItem) " +
"from Blog as blog " +
"left outer join blog.Items as blogItem " +
"group by blog.Name, blog.id " +
"order by max(blogItem.DateTime)"

);
q.SetMaxResults(max);
result = q.List();
tx.Commit();

}

return result;
}

public Blog GetBlogAndAllItems(long blogId)
{

Blog blog = null;

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

IQuery q = session.createQuery(
"from Blog as blog " +
"left outer join fetch blog.Items " +
"where blog.id = :blogId"

);
q.SetParameter("blogId", blogId);
blog = (Blog) q.List()[0];
tx.Commit();

}

return blog;
}

public IList ListBlogsAndRecentItems()
{

IList result = null;

using (ISession session = _sessions.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

IQuery q = session.CreateQuery(
"from Blog as blog " +
"inner join blog.Items as blogItem " +
"where blogItem.DateTime > :minDate"

);

DateTime date = DateTime.Now.AddMonths(-1);
q.SetDateTime("minDate", date);

result = q.List();
tx.Commit();

}

return result;
}

}
}

Example: Weblog Application

NHibernate 1.0.2 125

Chapter 18. Example: Various Mappings
This chapter shows off some more complex association mappings.

18.1. Employer/Employee

The following model of the relationship between Employer and Employee uses an actual entity class (Employ-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetory values and employee names.

Here's a possible mapping document:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"
assembly="..." namespace="...">

<class name="Employer" table="employers">
<id name="Id">

<generator class="sequence">
<param name="sequence">employer_id_seq</param>

</generator>
</id>
<property name="Name"/>

</class>

<class name="Employment" table="employment_periods">

<id name="Id">
<generator class="sequence">

<param name="sequence">employment_id_seq</param>
</generator>

</id>
<property name="StartDate" column="start_date"/>
<property name="EndDate" column="end_date"/>

<component name="HourlyRate" class="MonetaryAmount">
<property name="Amount">

<column name="hourly_rate" sql-type="NUMERIC(12, 2)"/>
</property>
<property name="Currency" length="12"/>

</component>

<many-to-one name="Employer" column="employer_id" not-null="true"/>
<many-to-one name="Employee" column="employee_id" not-null="true"/>

</class>

<class name="Employee" table="employees">

NHibernate 1.0.2 126

<id name="Id">
<generator class="sequence">

<param name="sequence">employee_id_seq</param>
</generator>

</id>
<property name="TaxfileNumber"/>
<component name="Name" class="Name">

<property name="FirstName"/>
<property name="Initial"/>
<property name="LastName"/>

</component>
</class>

</hibernate-mapping>

And here's the table schema generated by SchemaExport.

create table employers (
Id BIGINT not null,
Name VARCHAR(255),
primary key (Id)

)

create table employment_periods (
Id BIGINT not null,
hourly_rate NUMERIC(12, 2),
Currency VARCHAR(12),
employee_id BIGINT not null,
employer_id BIGINT not null,
end_date TIMESTAMP,
start_date TIMESTAMP,
primary key (Id)

)

create table employees (
Id BIGINT not null,
FirstName VARCHAR(255),
Initial CHAR(1),
LastName VARCHAR(255),
TaxfileNumber VARCHAR(255),
primary key (Id)

)

alter table employment_periods
add constraint employment_periodsFK0 foreign key (employer_id) references employers

alter table employment_periods
add constraint employment_periodsFK1 foreign key (employee_id) references employees

create sequence employee_id_seq
create sequence employment_id_seq
create sequence employer_id_seq

18.2. Author/Work

Consider the following model of the relationships between Work, Author and Person. We represent the relation-
ship between Work and Author as a many-to-many association. We choose to represent the relationship between
Author and Person as one-to-one association. Another possibility would be to have Author extend Person.

Example: Various Mappings

NHibernate 1.0.2 127

The following mapping document correctly represents these relationships:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"
assembly="..." namespace="...">

<class name="Work" table="works" discriminator-value="W">

<id name="Id" column="id">
<generator class="native"/>

</id>
<discriminator column="type" type="character"/>

<property name="Title"/>
<set name="Authors" table="author_work" lazy="true">

<key>
<column name="work_id" not-null="true"/>

</key>
<many-to-many class="Author">

<column name="author_id" not-null="true"/>
</many-to-many>

</set>

<subclass name="Book" discriminator-value="B">
<property name="Text" column="text" />

</subclass>

<subclass name="Song" discriminator-value="S">
<property name="Tempo" column="tempo" />
<property name="Genre" column="genre" />

</subclass>

</class>

<class name="Author" table="authors">

<id name="Id" column="id">
<!-- The Author must have the same identifier as the Person -->
<generator class="assigned"/>

</id>

<property name="Alias" column="alias" />
<one-to-one name="Person" constrained="true"/>

<set name="Works" table="author_work" inverse="true" lazy="true">
<key column="author_id"/>

Example: Various Mappings

NHibernate 1.0.2 128

<many-to-many class="Work" column="work_id"/>
</set>

</class>

<class name="Person" table="persons">
<id name="Id" column="id">

<generator class="native"/>
</id>
<property name="Name" column="name" />

</class>

</hibernate-mapping>

There are four tables in this mapping. works, authors and persons hold work, author and person data respect-
ively. author_work is an association table linking authors to works. Heres the table schema, as generated by
SchemaExport.

create table works (
id BIGINT not null generated by default as identity,
tempo FLOAT,
genre VARCHAR(255),
text INTEGER,
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)

)

create table author_work (
author_id BIGINT not null,
work_id BIGINT not null,
primary key (work_id, author_id)

)

create table authors (
id BIGINT not null generated by default as identity,
alias VARCHAR(255),
primary key (id)

)

create table persons (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

alter table authors
add constraint authorsFK0 foreign key (id) references persons

alter table author_work
add constraint author_workFK0 foreign key (author_id) references authors

alter table author_work
add constraint author_workFK1 foreign key (work_id) references works

18.3. Customer/Order/Product

Now consider a model of the relationships between Customer, Order and LineItem and Product. There is a
one-to-many association between Customer and Order, but how should we represent Order / LineItem /
Product? I've chosen to map LineItem as an association class representing the many-to-many association
between Order and Product. In NHibernate, this is called a composite element.

Example: Various Mappings

NHibernate 1.0.2 129

The mapping document:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"
assembly="..." namespace="...">

<class name="Customer" table="customers">
<id name="Id" column="id">

<generator class="native"/>
</id>
<property name="Name" column="name"/>
<set name="Orders" inverse="true" lazy="true">

<key column="customer_id"/>
<one-to-many class="Order"/>

</set>
</class>

<class name="Order" table="orders">
<id name="Id" column="id">

<generator class="native"/>
</id>
<property name="Date" column="date"/>
<many-to-one name="Customer" column="customer_id"/>
<list name="LineItems" table="line_items" lazy="true">

<key column="order_id"/>
<index column="line_number"/>
<composite-element class="LineItem">

<property name="Quantity" column="quantity"/>
<many-to-one name="Product" column="product_id"/>

</composite-element>
</list>

</class>

<class name="Product" table="products">
<id name="Id" column="id">

<generator class="native"/>
</id>
<property name="SerialNumber" column="serial_number" />

</class>

</hibernate-mapping>

customers, orders, line_items and products hold customer, order, order line item and product data respect-
ively. line_items also acts as an association table linking orders with products.

create table customers (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

create table orders (
id BIGINT not null generated by default as identity,
customer_id BIGINT,
date TIMESTAMP,
primary key (id)

)

create table line_items (

Example: Various Mappings

NHibernate 1.0.2 130

line_number INTEGER not null,
order_id BIGINT not null,
product_id BIGINT,
quantity INTEGER,
primary key (order_id, line_number)

)

create table products (
id BIGINT not null generated by default as identity,
serial_number VARCHAR(255),
primary key (id)

)

alter table orders
add constraint ordersFK0 foreign key (customer_id) references customers

alter table line_items
add constraint line_itemsFK0 foreign key (product_id) references products

alter table line_items
add constraint line_itemsFK1 foreign key (order_id) references orders

Example: Various Mappings

NHibernate 1.0.2 131

Chapter 19. Best Practices

Write fine-grained classes and map them using <component>.
Use an Address class to encapsulate street, suburb, state, postcode. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
NHibernate makes identifier properties optional. There are all sorts of reasons why you should use them.
We recommend that identifiers be 'synthetic' (generated, with no business meaning) and of a non-primitive
type. For maximum flexibility, use Int64 or String.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map Eg.Foo in the file Eg/Foo.hbm.xml. This makes par-
ticularly good sense in a team environment.

Embed mappings in assemblies.
Place mapping files along with the classes they map and declare them as Embedded Resources in Visual
Studio.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use parameters.
As in ADO.NET, always replace non-constant values by "?". Never use string manipulation to bind a non-
constant value in a query! Even better, consider using named parameters in queries.

Don't manage your own ADO.NET connections.
NHibernate lets the application manage ADO.NET connections. This approach should be considered a last-
resort. If you can't use the built-in connections providers, consider providing your own implementation of
NHibernate.Connection.IConnectionProvider.

Consider using a custom type.
Suppose you have a type, say from some library, that needs to be persisted but doesn't provide the accessors
needed to map it as a component. You should consider implementing NHibernate.IUserType. This ap-
proach frees the application code from implementing transformations to / from an NHibernate type.

Use hand-coded ADO.NET in bottlenecks.
In performance-critical areas of the system, some kinds of operations (eg. mass update / delete) might bene-
fit from direct ADO.NET. But please, wait until you know something is a bottleneck. And don't assume that
direct ADO.NET is necessarily faster. If need to use direct ADO.NET, it might be worth opening a
NHibernate ISession and using that SQL connection. That way you can still use the same transaction
strategy and underlying connection provider.

Understand ISession flushing.
From time to time the ISession synchronizes its persistent state with the database. Performance will be af-
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In a three tiered architecture, consider using SaveOrUpdate().
When using a distributed architecture, you could pass persistent objects loaded in the middle tier to and
from the user interface tier. Use a new session to service each request. Use ISession.Update() or ISes-

NHibernate 1.0.2 132

sion.SaveOrUpdate() to update the persistent state of an object.

In a two tiered architecture, consider using session disconnection.
Database Transactions have to be as short as possible for best scalability. However, it is often neccessary to
implement long running Application Transactions, a single unit-of-work from the point of view of a user.
This Application Transaction might span several client requests and response cycles. Either use Detached
Objects or, in two tiered architectures, simply disconnect the NHibernate Session from the ADO.NET con-
nection and reconnect it for each subsequent request. Never use a single Session for more than one Applic-
ation Transaction usecase, otherwise, you will run into stale data.

Don't treat exceptions as recoverable.
This is more of a necessary practice than a "best" practice. When an exception occurs, roll back the
ITransaction and close the ISession. If you don't, NHibernate can't guarantee that in-memory state accur-
ately represents persistent state. As a special case of this, do not use ISession.Load() to determine if an
instance with the given identifier exists on the database; use Get() or a query instead.

Prefer lazy fetching for associations.
Use eager (outer-join) fetching sparingly. Use proxies and/or lazy collections for most associations to
classes that are not cached in the second-level cache. For associations to cached classes, where there is a
high probability of a cache hit, explicitly disable eager fetching using fetch="select". When an outer-join
fetch is appropriate to a particular use case, use a query with a left join fetch.

Consider abstracting your business logic from NHibernate.
Hide (NHibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by handcoded ADO.NET, associated to NHibernate via an
IUserType. (This advice is intended for "sufficiently large" applications; it is not appropriate for an applica-
tion with five tables!)

Implement Equals() and GetHashCode() using a unique business key.
If you compare objects outside of the ISession scope, you have to implement Equals() and
GetHashCode(). Inside the ISession scope, object identity is guaranteed. If you implement these methods,
never ever use the database identifier! A transient object doesn't have an identifier value and NHibernate
would assign a value when the object is saved. If the object is in an ISet while being saved, the hash code
changes, breaking the contract. To implement Equals() and GetHashCode(), use a unique business key,
that is, compare a unique combination of class properties. Remember that this key has to be stable and
unique only while the object is in an ISet, not for the whole lifetime (not as stable as a database primary
key). Never use collections in the Equals() comparison (lazy loading) and be careful with other associated
classes that might be proxied.

Don't use exotic association mappings.
Good usecases for a real many-to-many associations are rare. Most of the time you need additional inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it is really neccessary.

Best Practices

NHibernate 1.0.2 133

Part I. NHibernateContrib Documentation

Preface
The NHibernateContrib is various programs contributed to NHibernate by members of the NHibernate Team or
by the end users. The projects in here are not considered core pieces of NHibernate but they extend it in a use-
ful way.

NHibernate 1.0.2 cxxxv

Chapter 20. NHibernate.Caches
What is NHibernate.Caches?

NHibernate.Caches are add-ins for NHibernate [http://www.nhibernate.org] contributed by Kevin Willi-
ams (aka k-dub). A cache is place where entities are kept (at their first loading); once in cache, they can be re-
trieved without having to query them (again) in the back-end storage. This means that they are faster to
(re)load.

An NHibernate session has an internal (first-level) cache where it keeps its entities. There is no sharing between
these caches; so a session is destroyed with its cache. NHibernate provides a second-level cache system; it
works at the SessionFactory level. So it is shared by all sessions created by the same SessionFactory.

An important point is that the second-level cache does not cache instances of the object type being cached; in-
stead it caches the individual values of the properties of that object. This provides two benefits. One, NHibern-
ate doesn't have to worry that your client code will manipulate the objects in a way that will disrupt the cache.
Two, the relationships and associations do not become stale, and are easy to keep up-to-date because they are
simply identifiers. The cache is not a tree of objects but rather a map of arrays.

With the session-per-request model, a high number of Session can concurrently access to the same entity
without hitting the database each time; hence the performance gain.

These contributions make it possible to use different cache providers for NHibernate:

• NHibernate.Caches.Prevalence makes it possible to use the underlying Bamboo.Prevalence implementa-
tion as cache provider. Open the file Bamboo.Prevalence.license.txt for more information about its li-
cense; you can also visit its website [http://bbooprevalence.sourceforge.net/].

• NHibernate.Caches.SysCache makes it possible to use the underlying System.Web.Caching.Cache imple-
mentation as cache provider. This means that you can rely on ASP.NET caching feature to understand how
it works. For more information, read (on the MSDN): Caching Application Data
[http://msdn.microsoft.com/library/en-us/cpguide/html/cpconcacheapis.asp].

20.1. How to use a cache?

Here are the steps to follow to enable the second-level cache in NHibernate:

• Choose the cache provider you want to use and copy its assembly in your assemblies directory (NHibern-
ate.Caches.Prevalence.dll or NHibernate.Caches.SysCache.dll).

• To tell NHibernate which cache provider to use, add in your NHibernate configuration file (can be YourAs-

sembly.exe.config or web.config or a .cfg.xml file):

<add key="hibernate.cache.provider_class" value="XXX" />(1)
<add key="expiration" value="120" />(2)

(1) "XXX" can be either "NHibernate.Caches.Prevalence.PrevalenceCacheProvider, NHibern-

ate.Caches.Prevalence" or "NHibernate.Caches.SysCache.SysCacheProvider, NHibern-

ate.Caches.SysCache".

NHibernate 1.0.2 136

http://www.nhibernate.org
http://bbooprevalence.sourceforge.net/
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconcacheapis.asp

(2) The expiration value is the number of seconds you wish to cache each entry (here two minutes). This
example applies to SysCache only.

• Add <cache usage="read-write|nonstrict-read-write|read-only"/> (just after <class>) in the mapping of
the entities you want to cache. It also works for collections (bag, list, map, set, ...).

Be careful. Caches are never aware of changes made to the persistent store by another process (though they
may be configured to regularly expire cached data). As the caches are created at the SessionFactory level, they
are destroyed with the SessionFactory instance; so you must keep them alive as long as you need them.

20.2. Prevalence Cache Configuration

There is only one configurable parameter: prevalenceBase. This is the directory on the file system where the
Prevalence engine will save data. It can be relative to the current directory or a full path. If the directory doesn't
exist, it will be created.

20.3. SysCache Configuration

As SysCache relies on System.Web.Caching.Cache for the underlying implementation, the configuration is
based on the available options that make sense for NHibernate to utilize.

• expiration = number of seconds to wait before expiring each item

• priority = a numeric cost of expiring each item, where 1 is a low cost, 5 is the highest, and 3 is normal. Only
values 1 through 5 are valid.

SysCache has a config file section handler to allow configuring different expirations and priorities for different
regions. Here's an example:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="syscache" type="NHibernate.Caches.SysCache.SysCacheSectionHandler,NHibernate.Caches.SysCache" />

</configSections>

<syscache>
<cache region="foo" expiration="500" priority="4" />
<cache region="bar" expiration="300" priority="3" />

</syscache>
</configuration>

NHibernate.Caches

NHibernate 1.0.2 137

Chapter 21. NHibernate.Mapping.Attributes
What is NHibernate.Mapping.Attributes?

NHibernate.Mapping.Attributes is an add-in for NHibernate [http://www.nhibernate.org] contributed by
Pierre Henri Kuaté (aka KPixel); the former implementation was made by John Morris. NHibernate re-
quire mapping streams to bind your domain model to your database. Usually, they are written (and maintained)
in separated hbm.xml files.

With NHibernate.Mapping.Attributes, you can use .NET attributes to decorate your entities and this attributes
will be used to generate these mapping .hbm.xml (as files or streams). So you will no longer have to bother
with this nasty xml files ;).

Content of this library.

• NHibernate.Mapping.Attributes: That the only project you need (as end-user)

• Test: a working sample using attributes and HbmSerializer as NUnit TestFixture

• Generator: The program used to generate attributes and HbmWriter

• Refly [http://mbunit.tigris.org/]: Thanks to Jonathan de Halleux [http://www.dotnetwiki.org/] for this library
which make it so easy to generate code

Important

This library is generated using the file /

src/NHibernate.Mapping.Attributes/nhibernate-mapping-2.0.xsd (which is embedded in the as-
sembly to be able to validate generated XML streams). As this file can change at each new release of
NHibernate, you should regenerate it before using it with a different version (open the Generator solu-
tion, compile and run the Generator project). But, no test has been done with versions prior to 0.8.

21.1. How to use it?

The end-user class is NHibernate.Mapping.Attributes.HbmSerializer. This class serialize your domain
model to mapping streams. You can either serialize classes one by one or an assembly. Look at NHibern-

ate.Mapping.Attributes.Test project for a working sample.

The first step is to decorate your entities with attributes; you can use: [Class], [Subclass], [JoinedSubclass]
or [Component]. Then, you decorate your members (fields/properties); they can take as many attributes as re-
quired by your mapping. Eg:

[NHibernate.Mapping.Attributes.Class]
public class Example
{

[NHibernate.Mapping.Attributes.Property]
public string Name;

}

After this step, you use NHibernate.Mapping.Attributes.HbmSerializer: (here, we use Default which is an
instance you can use if you don't need/want to create it yourself).

NHibernate 1.0.2 138

http://www.nhibernate.org
http://mbunit.tigris.org/
http://www.dotnetwiki.org/

System.IO.MemoryStream stream = new System.IO.MemoryStream(); // where the xml will be written
NHibernate.Mapping.Attributes.HbmSerializer.Default.Validate = true; // Enable validation (optional)
// Here, we serialize all decorated classes (but you can also do it class by class)
NHibernate.Mapping.Attributes.HbmSerializer.Default.Serialize(

stream, System.Reflection.Assembly.GetExecutingAssembly());
stream.Position = 0; // Rewind
NHibernate.Cfg.Configuration cfg = new NHibernate.Cfg.Configuration();
cfg.Configure();
cfg.AddInputStream(stream); // Use the stream here
stream.Close();
// Now you can use this configuration to build your SessionFactory...

Note

As you can see here: NHibernate.Mapping.Attributes is not (really) intrusive. Setting attributes on your
objects doesn't force you to use them with NHibernate and doesn't break any constraint on your archi-
tecture. Attributes are purely informative!

21.2. Tips

• Use HbmSerializer.Validate to enable/disable the validation of generated xml streams (against NHibern-
ate mapping schema); this is useful to quickly find errors (they are written in StringBuilder HbmSerial-

izer.Error). If the error is due to this library then see if it is a know issue and report it; you can contribute
a solution if you solve the problem :)

• Your classes, fields and properties (members) can be private; just make sure that you have the permission to
access private members using reflection (ReflectionPermissionFlag.MemberAccess).

• Members of a mapped classes are also seek in its base classes (until we reach mapped base class). So you
can decorate some members of a (not mapped) base class and use it in its (mapped) sub class(es).

• For a Name taking a System.Type, set the type with Name="xxx" (as string) or NameType=typeof(xxx);
(add "Type" to "Name")

• By default, .NET attributes don't keep the order of attributes; so you need to set it yourself when the order
matter (using the first parameter of each attribute); it is highly recommended to set it when you have more
than one attribute on the same member.

• As long as there is no ambiguity, you can decorate a member with many unrelated attributes. A good ex-
ample is to put class-related attributes (like <discriminator>) on the identifier member. But don't forget
that the order matters (the <discriminator> must be after the <id>). The order used comes from the order
of elements in the NHibernate mapping schema. Personally, I prefer using negative numbers for these at-
tributes (if they come before!).

• You can add [HibernateMapping] on your classes to specify <hibernate-mapping> attributes (used when
serializing the class in its stream). You can also use HbmSerializer.Hbm* properties (used when serializing
an assembly or a type that is not decorated with [HibernateMapping]).

• Instead of using a string for DiscriminatorValue (in [Class] and [Subclass]), you can use any object you
want. Example:

[Subclass(DiscriminatorValueEnumFormat="d", DiscriminatorValueObject=DiscEnum.Val1)]

Here, the object is an Enum, and you can set the format you want (the default value is "g"). Note that you

NHibernate.Mapping.Attributes

NHibernate 1.0.2 139

must put it before! For others types, It simply use the ToString() method of the object.

• If you are using members of the type Nullables.NullableXXX (from the library Nullables), then they will
be mapped to Nullables.NHibernate.NullableXXXType automatically; don't set Type="..." in
[Property] (leave it null). Thanks to Michael Third for the idea :)

• Each stream generated by NHibernate.Mapping.Attributes can contain a comment with the date of the gen-
eration; You may enable/disable this by using the method WriteDateComment.

• If you forget to provide a required xml attribute, it will obviously throw an exception while generating the
mapping.

• The recommended and easiest way to map [Component] is to use [ComponentProperty]. The first step is to
put [Component] on the component class and map its fields/properties. Note that you shouldn't set the Name

in [Component]. Then, on each member in your classes, add [ComponentProperty]. But you can't override
Access, Update or Insert for each member.

There is a working example in NHibernate.Mapping.Attributes.Test (look for the class CompAddress and its
usage in others classes).

One last thing: ComponentPropertyAttribute inherits from DynamicComponentAttribute to easily write it
just after <component> elements in the XML stream.

• Another way to map [Component] is to use the way this library works: If a mapped class contains a mapped
component, then this component will be include in the class. NHibernate.Mapping.Attributes.Test contains
the classes JoinedBaz and Stuff which both use the component Address.

Basically, it is done by adding

[Component(Name = "MyComp")] private class SubComp : Comp {}

in each class. One of the advantages is that you can override Access, Update or Insert for each member.
But you have to add the component subclass in each class (and it can not be inherited).

• About customization. HbmSerializer uses HbmWriter to serialize each kind of attributes. Their methods
are virtual; so you can create a subclass and override any method you want (to change its default behavior).

Use the property HbmSerializer.HbmWriter to change the writer used (you may set a subclass of Hbm-

Writer).

Example using some this tips: (0, 1 and 2 are position indexes)

[NHibernate.Mapping.Attributes.Id(0, TypeType=typeof(int))] // Don't put it after [ManyToOne] !!!
[NHibernate.Mapping.Attributes.Generator(1, Class="uuid.hex")]

[NHibernate.Mapping.Attributes.ManyToOne(2, ClassType=typeof(Foo), OuterJoin=OuterJoinStrategy.True)]
private Foo Entity;

Generates:

<id type="Int32">
<generator class="uuid.hex" />

</id>
<many-to-one name="Entity" class="Namespaces.Foo, SampleAssembly" outer-join="true" />

21.3. Know issues and TODOs

NHibernate.Mapping.Attributes

NHibernate 1.0.2 140

First, read TODOs in the source code ;)

A Position property has been added to all attributes to order them. But there is still a problem:

When a parent element "p" has a child element "x" that is also the child element of another child element "c" of
"p" (preceding "x") :D Illustration:

<p>
<c>

<x />
</c>
<x />

</p>

In this case, when writing:

[Attributes.P(0)]
[Attributes.C(1)]

[Attributes.X(2)]
[Attributes.X(3)]

public MyType MyProperty;

X(3) will always belong to C(1) ! (as X(2)).

It is the case for <dynamic-component> and <nested-composite-element>.

Another bad news is that, currently, XML elements coming after this elements can not be included in them. Eg:
There is no way put a collection in <dynamic-component>. The reason is that the file nhibernate-map-

ping-2.0.xsd tells how elements are built and in which order, and NHibernate.Mapping.Attributes use this or-
der.

Anyway, the solution would be to add a int ParentNode property to BaseAttribute so that you can create a real
graph...

Actually, there is no other know issue nor planned modification. This library should be stable and complete; but
if you find a bug or think of an useful improvement, contact us!

On side note, it would be nice to write a better TestFixture than NHibernate.Mapping.Attributes.Test :D

21.4. Developer Notes

Any change to the schema (nhibernate-mapping-2.0.xsd) implies:

• Checking if there is any change to do in the Generator (like updating KnowEnums / AllowMultipleValue /
IsRoot / IsSystemType / IsSystemEnum / CanContainItself)

• Updating /src/NHibernate.Mapping.Attributes/nhibernate-mapping-2.0.xsd (copy/paste) and run-
ning the Generator again (even if it wasn't modified)

• Running the Test project and make sure that no exception is thrown. A class/property should be modified/ad-
ded in this project to be sure that any new breaking change will be caught (=> update the reference
hbm.xml files and/or the project NHibernate.Mapping.Attributes-1.1.csproj)

This implementation is based on NHibernate mapping schema; so there is probably lot of "standard schema fea-

NHibernate.Mapping.Attributes

NHibernate 1.0.2 141

tures" that are not supported...

The version of NHibernate.Mapping.Attributes should be the version of the NHibernate schema used to gener-
ate it (=> the version of NHibernate library).

In the design of this project, performance is a (very) minor goal :) Easier implementation and maintenance are
far more important.

NHibernate.Mapping.Attributes

NHibernate 1.0.2 142

Chapter 22. NHibernate.Tool.hbm2net
What is NHibernate.Tool.hbm2net?

NHibernate.Tool.hbm2net is an add-in for NHibernate [http://www.nhibernate.org]. It makes it possible
to generate source files from hbm.xml mapping files.

In the directory NHibernate.Tasks, there is a tool called Hbm2NetTask that you can use to automate your
build process (using NAnt)

NHibernate 1.0.2 143

http://www.nhibernate.org

Chapter 23. Nullables
What is Nullables?

Nullables is an add-in for NHibernate [http://www.nhibernate.org] contributed by Donald L Mull Jr.
(aka luggage). Most database systems allow base types (like int or bool) to be null. This means that a boolean
column can take the values 0, 1 or null, where null doesn't have the same meaning as 0. But it is not possible
with .NET 1.x; a bool is always either true or false.

Nullables makes it possible to use nullable base types in NHibernate. Note that .NET 2.0 has this feature.

23.1. How to use it?

Here is a simple example that uses a Nullables.NullableDateTime to (optionally) store the date of birth for a
Person.

public class Person
{

int _id;
string _name;
Nullables.NullableDateTime _dateOfBirth;

public Person()
{
}

public int Id
{

get { return this._id; }
}

public string Name
{

get { return this._name; }
set { this._name = value; }

}

public Nullables.NullableDateTime DateOfBirth
{

get { return this._dateOfBirth; }
set { this._dateOfBirth = value; }

}
}

As you can see, DateOfBirth has the type Nullables.NullableDateTime (instead of System.DateTime).

Here is the mapping

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0">

<class name="Example.Person, Example" table="Person">
<id name="Id" access="field.camelcase-underscore" unsaved-value="0">

<generator class="native" />
</id>
<property name="Name" type="String" length="200" />
<property name="DateOfBirth" type="Nullables.NHibernate.NullableDateTimeType, Nullables.NHibernate" />

</class>
</hibernate-mapping>

NHibernate 1.0.2 144

http://www.nhibernate.org

Important

In the mapping, the type of DateOfBirth must be Nullables.NHibernate.NullableDateTimeType.
Note that NHibernate.Mapping.Attributes handles that automatically.

Nullables.NHibernate.NullableXXXTypes are wrapper types used to translate Nullables types to
Database types.

Here is a piece of code using this example:

Person per = new Person();

textBox1.Text = per.DateOfBirth.Value.ToString() // will throw an exception when there is no value.

textBox1.Text = per.DateOfBirth.ToString() // will work. it will return an empty string if there is no value.

textBox1.Text = (per.DateOfBirth.HasValue ? per.DateOfBirth.Value.ToShortDateString() : "Unknown") // friendly message

per.DateOfBirth = new System.DateTime(1979, 11, 8); // implicit cast from the "plain" System.DateTime.
per.DateOfBirth = new NullableDateTime(new System.DateTime(1979, 11, 8)); // the long way.

per.DateOfBirth = null; // this works.
per.DateOfBirth = NullableDateTime.Default; // this is more correct.

Nullables

NHibernate 1.0.2 145

	NHibernate - Relational Persistence for Idiomatic .NET
	Table of Contents
	Preface
	Chapter 1. Quickstart with IIS and Microsoft SQL Server
	1.1. Getting started with NHibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Architecture
	2.1. Overview

	Chapter 3. ISessionFactory Configuration
	3.1. Programmatic Configuration
	3.2. Obtaining an ISessionFactory
	3.3. User provided ADO.NET connection
	3.4. NHibernate provided ADO.NET connection
	3.5. Optional configuration properties
	3.5.1. SQL Dialects
	3.5.2. Outer Join Fetching
	3.5.3. Custom ICacheProvider
	3.5.4. Query Language Substitution

	3.6. Logging
	3.7. Implementing an INamingStrategy
	3.8. XML Configuration File

	Chapter 4. Persistent Classes
	4.1. A simple POCO example
	4.1.1. Declare accessors and mutators for persistent fields
	4.1.2. Implement a default constructor
	4.1.3. Provide an identifier property (optional)
	4.1.4. Prefer non-sealed classes and virtual methods (optional)

	4.2. Implementing inheritance
	4.3. Implementing Equals() and GetHashCode()
	4.4. Lifecycle Callbacks
	4.5. IValidatable callback

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. XML Namespace
	5.1.2. hibernate-mapping
	5.1.3. class
	5.1.4. id
	5.1.4.1. generator
	5.1.4.2. Hi/Lo Algorithm
	5.1.4.3. UUID Hex Algorithm
	5.1.4.4. UUID String Algorithm
	5.1.4.5. GUID Algorithms
	5.1.4.6. Identity columns and Sequences
	5.1.4.7. Assigned Identifiers

	5.1.5. composite-id
	5.1.6. discriminator
	5.1.7. version (optional)
	5.1.8. timestamp (optional)
	5.1.9. property
	5.1.10. many-to-one
	5.1.11. one-to-one
	5.1.12. component, dynamic-component
	5.1.13. subclass
	5.1.14. joined-subclass
	5.1.15. map, set, list, bag
	5.1.16. import

	5.2. NHibernate Types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types
	5.2.4. Any type mappings

	5.3. SQL quoted identifiers
	5.4. Modular mapping files

	Chapter 6. Collection Mapping
	6.1. Persistent Collections
	6.2. Mapping a Collection
	6.3. Collections of Values and Many-To-Many Associations
	6.4. One-To-Many Associations
	6.5. Lazy Initialization
	6.6. Sorted Collections
	6.7. Using an <idbag>
	6.8. Bidirectional Associations
	6.9. Ternary Associations
	6.10. Heterogeneous Associations
	6.11. Collection examples

	Chapter 7. Component Mapping
	7.1. Dependent objects
	7.2. Collections of dependent objects
	7.3. Components as IDictionary indices
	7.4. Components as composite identifiers
	7.5. Dynamic components

	Chapter 8. Inheritance Mapping
	8.1. The Three Strategies
	8.2. Limitations

	Chapter 9. Manipulating Persistent Data
	9.1. Creating a persistent object
	9.2. Loading an object
	9.3. Querying
	9.3.1. Scalar queries
	9.3.2. The IQuery interface
	9.3.3. Filtering collections
	9.3.4. Criteria queries
	9.3.5. Queries in native SQL

	9.4. Updating objects
	9.4.1. Updating in the same ISession
	9.4.2. Updating detached objects
	9.4.3. Reattaching detached objects

	9.5. Deleting persistent objects
	9.6. Flush
	9.7. Ending a Session
	9.7.1. Flushing the Session
	9.7.2. Committing the database transaction
	9.7.3. Closing the ISession

	9.8. Exception handling
	9.9. Lifecyles and object graphs
	9.10. Interceptors
	9.11. Metadata API

	Chapter 10. Transactions And Concurrency
	10.1. Configurations, Sessions and Factories
	10.2. Threads and connections
	10.3. Considering object identity
	10.4. Optimistic concurrency control
	10.4.1. Long session with automatic versioning
	10.4.2. Many sessions with automatic versioning
	10.4.3. Application version checking

	10.5. Session disconnection
	10.6. Pessimistic Locking

	Chapter 11. HQL: The Hibernate Query Language
	11.1. Case Sensitivity
	11.2. The from clause
	11.3. Associations and joins
	11.4. The select clause
	11.5. Aggregate functions
	11.6. Polymorphic queries
	11.7. The where clause
	11.8. Expressions
	11.9. The order by clause
	11.10. The group by clause
	11.11. Subqueries
	11.12. HQL examples
	11.13. Tips & Tricks

	Chapter 12. Criteria Queries
	12.1. Creating an ICriteria instance
	12.2. Narrowing the result set
	12.3. Ordering the results
	12.4. Associations
	12.5. Dynamic association fetching
	12.6. Example queries

	Chapter 13. Native SQL Queries
	13.1. Creating a SQL based IQuery
	13.2. Alias and property references
	13.3. Named SQL queries

	Chapter 14. Improving performance
	14.1. Understanding Collection performance
	14.1.1. Taxonomy
	14.1.2. Lists, maps and sets are the most efficient collections to update
	14.1.3. Bags and lists are the most efficient inverse collections
	14.1.4. One shot delete

	14.2. Proxies for Lazy Initialization
	14.3. Using batch fetching
	14.4. The Second Level Cache
	14.4.1. Cache mappings
	14.4.2. Strategy: read only
	14.4.3. Strategy: read/write
	14.4.4. Strategy: nonstrict read/write

	14.5. Managing the ISession Cache
	14.6. The Query Cache

	Chapter 15. Toolset Guide
	15.1. Schema Generation
	15.1.1. Customizing the schema
	15.1.2. Running the tool
	15.1.3. Properties
	15.1.4. Using Ant
	15.1.5. Incremental schema updates
	15.1.6. Using Ant for incremental schema updates

	15.2. Code Generation
	15.2.1. The config file (optional)
	15.2.2. The meta attribute
	15.2.3. Basic finder generator
	15.2.4. Velocity based renderer/generator

	15.3. Mapping File Generation
	15.3.1. Running the tool

	Chapter 16. Example: Parent/Child
	16.1. A note about collections
	16.2. Bidirectional one-to-many
	16.3. Cascading lifecycle
	16.4. Using cascading Update()
	16.5. Conclusion

	Chapter 17. Example: Weblog Application
	17.1. Persistent Classes
	17.2. Hibernate Mappings
	17.3. NHibernate Code

	Chapter 18. Example: Various Mappings
	18.1. Employer/Employee
	18.2. Author/Work
	18.3. Customer/Order/Product

	Chapter 19. Best Practices
	Part I. NHibernateContrib Documentation
	Preface
	Chapter 20. NHibernate.Caches
	20.1. How to use a cache?
	20.2. Prevalence Cache Configuration
	20.3. SysCache Configuration

	Chapter 21. NHibernate.Mapping.Attributes
	21.1. How to use it?
	21.2. Tips
	21.3. Know issues and TODOs
	21.4. Developer Notes

	Chapter 22. NHibernate.Tool.hbm2net
	Chapter 23. Nullables
	23.1. How to use it?

