¢ HIBERNATE

NHibernate Reference Documentation

Version: 1.0.2

Table of Contents

(1=, =0 2SR Vi
1. Quickstart with I11Sand Microsoft SQL SErVENcccciciiiiiiiiinannnnennasannnnnnannnsannnn 1
1.1. Getting started With NHIDEINALEcoooiiiiiieeie e 1

1.2, FIrSt PErSISIENT ClESSiveiiiiiiiiie ettt e e e e e s e e e nnne s 2

RS AV = o o T g Te 1 = o PRSPPI 3

1.4, PlayiNg WITN CBLSccoiiuiiiieiiiiiiee ettt e e e e e s e e e e e e e s anbn e e e e s nnnneees 4

LT T o PP PEPPRRPP 6

A o T (o U = RSO 7
P2 I @Y= a1 = SRR 7

3. 1SessionFactory CoNfiQUIatioNeeiieiiiiiiiiieiee e e e e e e s r e e e e e e s aanenees 10
3.1. ProgrammatiC CONFIQUIBLIONeeeiiiiiieeiiiiie e ettt e e e s e e e e nnnreeeen 10

3.2. Obtaining an ISESSIONFACLONYccevviiiiieee et e e e e e e e e e e s s e e e e eaeas 11

3.3. User provided ADO.NET CONNECLIONociiiiiiiiiiiiiiieiiiee et 11

3.4. NHibernate provided ADO.NET CONNECLIONccevvvviiiiiiiiiiieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeees 11

3.5. Optional configuration PrOPEITIESceeiiiuriieiiiieie e ee et e et e e e e e e e sbeeeeean 13
TN S O T I 1 - = o £ SR OPPRPSORR 14

3.5.2. OUter JOIN FEIChINGvvveiiiiie e a e e e 15

3.5.3. CuStOM [CaChEPIOVITEYoieeiiiiiieeee e e 15

3.5.4. Query Language SUDSHITULIONueviiieeiiiiiiiiiiee e sirrrre e e e e 16

G oo o oo [T PP P PP OUPPPPTPTPPPN 16

3.7. Implementing an INaMINGSIrALEOYccevveviiiiiiiiiiiiiiie e e e e e e e e e e e e e e ereeeees 16

3.8. XML CoNnfigUuration FIlEccoiuiiiiiiiiiiie ettt 16
s S = L O o TSR 18
4.1, A SIMPIE POCO EXAMPIE ..oveiiiee ettt e e e e e e et e e e e e e e s e esnnaaaeeeaeas 18
4.1.1. Declare accessors and mutators for persistent fields ... 19

4.1.2. Implement adefault CONSITUCIONueviiiieiiiiciiiiee e e 19

4.1.3. Provide an identifier property (Optional)coccueereiiiiiieeniiiiee e 19

4.1.4. Prefer non-sealed classes and virtual methods (optional)ccevvvvvvvvveviveieveveeeeeeenee, 19

4.2. Implementing iNNEITANCEc.eiiii i e e 20

4.3. Implementing Equals() and GetHashCode()eueeiiiiieeiiiiiieeeee e 20

4.4, LifeCyCle CallDACKSuuviiiiiiiei it e e e a e e e e aas 21

4.5. IValidatable CallDACKooiiiiiiiiiei e 22
o1 1o @ Y/ =T o o 11 o [P RPP 23
5.1. MapPING GECIAIEIIONcueeiieeiiiiiie ettt e et e e e s e e e s b e e e e e nnbneeeean 23
LI 0 QY I A= 1= 0 7= 23

5.1.2. hiDErNAE-MEBPPING ..vvveeeeeieeeieiiiiie et e e s e e e e e e e e s s s r e e e e e s s santa e e e e aeeasaanrrraneeeans 23
oINS 24

ST o PRI 26

O LA L QENEIBLON ... 26

5.1.4.2. HI/LO AIQOIITAM L..uviiiiiiiie e e e 27

5.1.4.3. UUID HeX AIQOTNM ...cooiiiiiieiiiiiie et 28

5.1.4.4. UUID String Algorithm ..., 28

5.1.4.5. GUID AIQOIthMScoooiiiiiie e 28

5.1.4.6. Identity cOlumMNS aNd SEQUENCEScuvvieeiiiiiiee et 28

5.1.4.7. AsSIgNEd [AENLITIErS ..oooeieeiiiiiec e 29

5.1.5. COMPOSITETA ..uieeiieeeitee ettt et e s e e et e e s abne e e e e nnr e e e e e nnes 29

ST G TR0 1= 0= PRSPPI 30

5.1.7. VErSION (OPLIONAL) ...eeiiiiiieeiiiiiie ettt ettt e e 30

NHibernate 1.0.2

NHibernate - Relational Persistence for Idiomatic .NET

5.1.8. timestamp (OPLIONAI)eeeeiiiiiiieiiii e 30
LI S I oo o< 1 SR 31
5.1.10. MANY-TO-0NE ...ttt e e e e e e s e et e e e e s s s b be e e e e e e e e s s nrbreeeeeeas 33
5.1.00. ONEEO-0NE ... 34
5.1.12. component, dynamiC-COMPONENTcoiuurrreiiiireeeriiiee et eeessirree s e e eire e e nees 35
5.1.13. SUBCIBSS ..ot a e e e e eeaens 36
5.1.14. JOINEA-SUDCIASSvvviiiiiie ettt e e e e e e e e s s et raeeeaaas 36
5.1.15. Map, Set, liSt, DAG ...vveieiiieee i aas 37
ST I50 T 1 o Lo PP 37

5.2. NHIDEIMEIE TYPES ...eeiieiiiiiie ettt e e et e e e e s et e e e e e e e e nnbneeeeans 38
5.2 ENGLIES @NA VBIUESeoiiiieiiiiiiieiie ettt ettt e e e e e st e e e e e e e e enenneeeeeeas 38
5.2.2. BASICVAIUBTYPES ...eeeiiiieiee ittt ettt et e et e e e e e e 38
5.2.3. CUSIOM VAIUB TYPES ...eeeiiieeeiiiiiiiiie et e e e e e ettt e e e e e e ettt ee e e e e e s e st e e eeaeeseaennenaeeeeeens 40
5.2.4. ANY tYPE MAPPINGS «.vvvvereeeeeiiiiiiriereeeeessiiittrereeeeesssastrraseeeaeessssantrrareeeeesssasnrrraeeeeens 41

5.3. SQL QUOLEA THENTITIEIS ...t e e e e e e e e 42
5.4. Modular Mapping filESeeiee e a e e e 42
6. COlECTION MEPPING ..ttt e e s e e e et e e e bbb e e e e atb et e e e annb e e e e annbeneeeans 43
6.1. PerSiStent COIECIIONSoiiiieiiiiiiiieiie et e e e e e e e s st e e e e e e e e s e nteeeeeeeaaeeaans 43
6.2. MapPING @COHECLIONeviieeiiiieee e e e e e e e e e et eraaaeeeans 44
6.3. Collections of Valuesand Many-To-Many ASSOCIBLIONSeeeerrrrreeriiiireeesniieeeessieeeeeas 45
6.4. ONE-TO-Many ASSOCIBLIONSc..uvveiiieeeeiiiiiiiire e e e e e s e eec e e e e e e e s s st reeeeaeeessanntbraeeeeaaeeaaans 47
6.5. LAZy INITIAliZBIIONeeiiiiiiiie ettt e e e e e e e e e e e nnbreeeaaa 47
6.6. SOMEA COIECLIONSeeiiiiiiiiie e e e e et e e e st e e e e snaeeeeesneeeeeeans 48
6.7. USING 8N SIADAO™eeeiiiiiiiiie ettt ettt et e et e e e e e st e e e e s snbbe e e e e anbreeeean 49
6.8. Bidirectional ASSOCIBLIONScc.uuuiiiiiieeeiiie e e e e ettt ee e e e e e e s st e e e e e e e e e aaneneeeeeeaaeeaans 50
6.9. TErNANY ASSOCIBLIONS ...vvveiieeeeiiiiiiiieiet e e e e e e e s e e e ee e et s e et e e e e aeeesaaasatraeeeaaesessasntranareaaaeesaans 51
6.10. HEterogeNEOUS ASSOCIBLIONSceeiurreeeeiiireeeeatteee e s st e e s e e e s sbe e e e s sser e e e s anne e e e e annreeeeans 51
6.11. COlECHION EXAMPIES ..oveeiiieee e e e e e e e e e e e et e e e e aaeeeans 51
7. COMPONENT MBPPING oottt e et e e e e e e et e e e e e e b e e e e e bbb e e e s abb e e e e e annreeeeaanreneeeans 54
7.1, DEPENAENT ODJECESeiiiiieiiee e e e e e e e s e e e e e e e e s et a e e e e aaeeaan 54
7.2. Collections of dependent ODJECESeeiiiiiiiieiiiiie e 55
7.3. Components as IDictionary iINdICEScoooeeiiiiiii i, 56
7.4. Components as COMPOSItE IdENtITIErSccccviiiiiiie e 56
7.5. DYNAMIC COMPONENTSuveeieeiiiieeeeeite et e e st e e sttt e e st e e e s e e e e s nbe e e e e asar e e e e snnne e e e e anneneeean 58
8. INNENTTANCE M APPING ..vvviiiiii et e e e e e e e e e e e e e e s s eaaatbae e e e e e e e s aaatraaneeeeas 59
8.1. TNE TINIEE SITALEJIES ... i ueeeeee ettt ettt e e et e e s st e e e e e e e e e anbreeeean 59
S 10 1] = (o] L PP PRRRT 61
9. Manipulating PerSiStENt D@ataccouiuuiiieiiiiiieeiiiee et e s b e e nnbreeeean 63
9.1. Creating apersistent ODJECTc..eiiiiiiii e e e e e e e 63
9.2.L0ading @an OBJECEovviiiiie e aa e e e 63
SR RO 1= o/ oo PP PP PR PP PPPPPPPPUPPPN 64
ST IS o = o (U1 1= PR 65
0.3.2. The TQUENY INTEITACEeeiiiiiiiie et e e 66
9.3.3. Filtering COlleCtions ... 67
O.3.4. CrITENTAGUENTESeeeeeeeiteie ettt et ettt e et e e e et e e et b e e e e abae e e e e ennb e e e e enees 67
9.3.5. QuEriesinNAaiVE SQLcccooe e, 67

o B B ol = 1] 1o o] o= ox PRSP 68
9.4.1. Updating iN the SAME I SESSIONueiiiiiiiiiee et 68
9.4.2. Updating detaChed ObJECLSuuviiiie it 68
9.4.3. Reattaching detached ODJECESeviiiiiiii e 69

9.5. Deleting persistent ODJECESccooeeeiiiii i, 70
oG = 1 TSP PRRSPRPPRN 70

NHibernate 1.0.2

NHibernate - Relational Persistence for Idiomatic .NET

O.7. ENUING @ SESSION ...ttt ettt e ekt e e et e e e et e e e e e e e e e e e nnne e e e e anreeeeaan 71
9.7.1. FIUShING thE SESSIONceiiiiiiiiiiiiee e e e e e et e e e e e s e atbreeeeaeas 71
9.7.2. Committing the database tranSaCiONccoiiiriiiiiiiiie e 71
0.7.3. CloSiNg the ISESSIONccooeeiiieeeee e 71

9.8. EXCEPLION NANGIINGeeeiieiie et e e snbeeeeean 72

9.9. Lifecylesand ODJECE Graphseeeiiiiiiee et e e e e e e e e e e e e e e e e e 72

.00, INEEICEIIIONS ..o 73

.11 Metadata APl ..., 75

10. TransactioNS AN CONCUITENCY ..eeiiieeeiiiciiiiee et e e e e e eeetttae e e e e e e e s s st b e e e e e e e e s s s ststareeeeeeesssantrraneeaeas 76

10.1. Configurations, SesSioNS and FACIOMESccvieeeiiiciiiieiiie e e e e e e e 76

10.2. Threads and CONNECLIONSuiiiieiei et e e e e e e e e e e e e e e s e e e e e e e e e annnneees 76

10.3. Considering ODJECE IHENTITYceeiiiieieeiiie et 76

10.4. OptimistiC CONCUITENCY CONIIOIoeiiiiiieiie et e e e e e e e e e 77
10.4.1. Long session With automMatic VEISIONINGccceeeeiiiciiiiiieeee e ccciiiniee e e e e s ssinrreeee s 77
10.4.2. Many sessions With autOmatiC VEISIONINGeveerivrreeeiiieeeesiieee e e e e e 77
10.4.3. Application version Checkingcccciiiiiiiie e 78

10.5. SeSSION AISCONNECTION ... ieeiiieiee e e ettt e e e e e e e e e e s e et e e e e e e e e s snnraaereaeeeesannnneees 78

10.6. PESSIMISIC LOCKING ...uuuiiiiiiii s nnn s nannnnnnnnnnnnns 79

11. HQL: TheHibernate QUErY LAnNQUAGOEeevreeeiiiiiiiiiiieeee e e e e sitiiee e e e e e e e s s ssnvaae s e e e e e s s snnnsnanneeeeas 81

11,1, CASE SENSIIVITY evveeieiiiiiiee it et e e e st e e e et e e e et e e e sttt e e e e s sna e e e enseeeeeansaeeeeannneeaeeennes 81

I I 0 T= N o I = T PSPPSR 81

11.3. ASSOCIBLIONS BN JOINSeeiiiiiiieeeiieee ettt e e et e e e e st e e e e e e e st e e e s abn e e e e aannneeeeennes 81

114, TRE SEIECE ClALSE ...eeiiiiiiii ettt ettt e e e et e e e et e e e e ennae e e e e nnnneeeeenees 82

11.5. AQQregate fUNCLIONSocoiiiiiieiiiiiie e ettt e ettt e et s e et e e st e e e s st e e e e s annne e e e e anes 83

11.6. POIYMOIPRIC QUETTESuueiiiiiiii s nsnsnsnnnsnnnsnnnnnnnnnnns 83

11.7. TREWREIE CIAUSE ..ottt a e e e 84

11,8, EXPIESSIONS ...ceetteeee ettt ettt e e et e e et e e et e e e n et e e e e e e e e e e e e nnes 85

11.9. ThE OFAEr DY ClAUSEcoeeiiee e e e e e e e e r e e e e e e s e nanrees 87

11.10. TREQGrOUP DY ClBLISEeeiiiiiieee ettt s e 87

S T oo 1 1= 1= PR 88

11,12, HOQL EXAIMPIES ...eiieiiiiiieeiieiee ettt ettt et e sttt e e et e e et e e e e et e e e e anan e e e e e e 88

1213, TIPS & THICKS .uuuuiiiiiiiiiic s a s nnnnnnasnnnsnsnsnsnnnsnnnnnnnnnnnnnnns 90

12, CriterTA QUETES ..uuiuiiiiiiieiiee e e e aaaa s s s aaa s s s aasasaasssssssssnsssssnsnsssssnsnsnsnsnsnnnnnnes 92

12.1. Creating an | CriteriaiNStaNCEc.veveeiiiiiiee ettt e e e s e e 92

12.2. NarrowinNg the FESUIT SELuiiiiiiie e e e e e e st r e e e e e e e s ananeees 92

12.3. Ordering tNETESUITSeiiiiiiii et e e 93

NS o o F-= 1 o] T EEPRP 93

12.5. DynamicC assoCiation FEICHINGuveieiiiiiiie et 93

12.6. EXAMPIE QUENTESeeeiieee et ettt e e ettt e e e e e e et e e e e e e e e s annnteaeeeeaeeeeannnenes 94

13, NALIVE SQOL QUET IS .. e s aaaa e s e ssaasaasssssssssssssssssssssssnsnsnsssnsnnnnnnen 95

13.1. Creating @ SQL based TQUENYuiiiiiiiiieeeet ettt 95

13.2. Alias and property FEFEIrENCESccoii i e e e e e e e eaneees 95

13.3. NAMEA SOQL QUENTESeeeeieiiiiiee ettt ettt ettt e et e e e s e e s e e e e e e e e e e nnes 95

14, IMProving PErfOrMANCEcccciiiiiiiiiii s aaaasasasnsasarasnsasnnnsssnsnsnnnnnnnnnnnnnn 97

14.1. Understanding Collection performanCec.eeeoiieiieiiiiiee e 97
T4.1. 0. T@XONOIMY .. s 97
14.1.2. Lists, maps and sets are the most efficient collectionsto updatecccvvveeeee... 97
14.1.3. Bags and lists are the most efficient inverse collectionscccovcviiiiiiiieeeee, 98
14.1.4. ONE SOt AEIBLE ..o 98

14.2. Proxiesfor Lazy INItIaliZalIONoooiiiiiiieiiiie et 99

14.3. UsiNg batCh fEICHINGuei e aennnnnnnnes 100

14.4. The Second LeVel CaChieovviiie i 101

NHibernate 1.0.2

NHibernate - Relational Persistence for Idiomatic .NET

14.4.1. CaChE MAPPINGSevveeeeiiieie ettt et e e s e e e s e e e nnes 102

14.4.2. Strategy: rea ONIYccooiiiiieeie e e e e 102

14.4.3. Strategy: rEA/WIITEceei i 102

14.4.4. Strategy: NONSLIiCL rEBA/WIITEuuieii e annnnees 102

14.5. Managing the ISESSION CaChEuuiiiiiiiiee e 103

14.6. The QUENY CaCNEoooiiee e e e e e e e eneees 103

15, TOOISEL GUITE ..ttt ettt e st e e ettt e e e st e et e e aabb e e e e s e nbbe e e e s nnbneeeeans 105
15.1. SChEMA GENEIELIONceeiiiiieeee ettt e e e e e e e e e e e e e e e e e snnreaeeeeaeeeeannnneees 105
15.1.1. Customizing the SCheMacooiiii i 105

15.1.2. RUNNING tNETO0Iviieeiiieie et 106

LT RS T o 0] 0= 1= 107

I R E g o 1N o | RSP 107

15.1.5. Incremental SCheEMA UPAALESceoiiiiiiieieeeee e 108

15.1.6. Using Ant for incremental schema updatescccccveevieeeiiiiciiiieeecee e, 108

A Oe o =X €= o1 = 1o o SRR 109
15.2.1. The config file (OPtioNal)coeviiiiiiiiie e 109

15.2.2. The MEtA@LITDULEcccoi e e e e e as 110

15.2.3. BaSIC fiNAEr QENEIGLONuuuiii s e nnnnnnnnnnnnns 112

15.2.4. Velocity based renderer/generatorevvveeeiiiciiiieiieeee e 113

15.3. Mapping File GENEIaLiONccoiiieiiiiiiiiiee et e e e e nnnnee e e 113
15.3.1. RUNNING TNETOO0Iciiiece e e 114

16. Example: Parent/CRildoooooiiiiee et 116
16.1. A NOte @DOUL COITECLIONS ...ttt e e e e snraeeeeans 116
16.2. Bidirectional ONE-tO-MENYccooiiuiiieiiiiiiie et et e st e e s e e e e e nnbneeeaans 116

16.3. CasCading lIfECYCIuuue s annnnnnnnnnnnnn 117

16.4. Using casCading UPAELE()vvveeieeeeiiiiiiiieiiee e s s ettt e e e e e e e e et e e e e e e s s santaan e e e e e e e s ennnnnees 118

16.5. CONCIUSION ...ttt e e e e e ettt e e e e e e e ettt e e e e e e e e e annbneeeeeaaeeeaannnnees 120

17. Example: Weblog APPIICALIONceeoiiiiiieiie e e et e e as 121
17.0. PErSISIENT CIASSES ..veviiieeiiiiiiiiiieteee e e s siittteteee e e s s ssetaaeeeeeeeessasssseaeereaeeesssasstanneeeaeessannnssees 121

17.2. HIBernate€ MapPinNgScoociiiiiiiiee ettt et e e e e e e et e e e e e e e e s saaba e e e e e e e e s ennnerees 122

17.3. NHIDEINAE COUReveiie ettt e e e e e e e e e e e s e s n e e e e e e s e ennnneees 123

18. EXample: VarioUS M aPPINGS ...uuuuuuuuuuuiiuiuunnnnunnnnnnnnnnnnnnnnnnnnnnsnnnnnsnnnsnsnsnnnsnsnsnsnsssnsnsnsnsnnnnns 126
18.1. EMPIOYEI/EMPIOYEE ...ttt ettt e e e a e e e e e st r e e e e e e e e nannnees 126

S A N 11 o A1V o 4 SRR 127
18.3. CUSLOMEI/OrAEI/PrOTUCEvvieeiiiiiie it et e st e e e e snbe e e e e snraeeeeans 129

RS T S B Tox o= R 132
I. NHibernateContri DOCUMENEELIONuuueiiiiieieiiiiei e e ettt e e e e e sttt e e e e e e e e e e eeeeeaeeeeans 134
P e B0 ... ——————— CXXXV

20. NHIDErNALE.CACNEScoiiiieiiiiiiiiie ettt e e e e e e e e e e e e e e e s ennnreeeeeeaeeeans 136
20.1. HOW tO USB @ CACNE?eiiiiiiiiie ettt 136

20.2. Prevalence Cache ConfigUIaionoocuueeeeiiireeeiiiiei e e e e ee e 137

20.3. SysCache Configurationcccuueieiiieeei e e e e e e e eaneees 137

21. NHibernateMapping.AttribDULESoooiiiiiiii e 138
201 HOW L0 USBIL? 1eeeiiiie ettt ettt ettt e e et e e et e e s ante e e e e snneeaeeesntneeeeans 138

P20 R | o PO PP PPP T OPPPPROPPPRP 139

21.3. KNOW iSSUES @N0 TODOScooiiiiiiiiiiee e e e ettt e e e e e e ettt e e e e e e e et eeeaaae e s e annenees 140

214, DEVEIOPEr NOLESuuiieiiiie e e e e ettt e e e s et e e e e e e s e st e e e e e e e e s s s atb e e eraaaeessannnneees 141

22. NHibernate. TOOL.hDM2NELoeiiiiieii e e e 143

23 NUIBDIES ...t e et e e e st b e e e e sttt e e e anbeeeesanbaeeeean 144
23. L HOW IO USBIT? oo, 144

NHibernate 1.0.2

Preface

Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. NHibernate is an object/relational mapping tool for .NET environments. The
term object/relational mapping (ORM) refers to the technique of mapping a data representation from an object
model to arelational data model with a SQL-based schema.

NHibernate not only takes care of the mapping from .NET classes to database tables (and from .NET data types
to SQL data types), but also provides data query and retrieval facilities and can significantly reduce develop-
ment time otherwise spent with manual data handling in SQL and ADO.NET.

NHibernate's goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. NHibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the .NET-based middle-tier. However, NHibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to agraph of objects.

If you are new to NHibernate and Object/Relational Mapping or even .NET Framework, please follow these
steps:

1. Read Chapter 1, Quickstart with I1S and Microsoft SQL Server for a 30 minute tutorial, using Internet In-
formation Services (11S) web server.

2. Read Chapter 2, Architecture to understand the environments where NHibernate can be used.

3. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action (http://www.manning.com/bauer) if you need more help with application design or if you prefer a
step-by-step tutorial. Also visit http://nhibernate.sourceforge.net/NHibernateEg/ for NHibernate tutorial
with examples.

4. FAQsare answered on the NHibernate website.
5. Third party demos, examples and tutorials are linked on the NHibernate website.

6. The Community Area on the NHibernate website is a good source for design patterns and various integra-
tion solutions (ASP.NET, Windows Forms).

If you have questions, use the user forum linked on the NHibernate website. We also provide a JIRA issue
trackings system for bug reports and feature requests. If you are interested in the development of NHibernate,
join the developer mailing list. If you are interested in translating this documentation into your language, con-
tact us on the developer mailing list.

NHibernate 1.0.2 Vi

Chapter 1. Quickstart with 1IS and Microsoft SQL
Server

1.1. Getting started with NHibernate

This tutorial explains a setup of NHibernate 1.0.2 within a Microsoft environment. The tools used in this tutori-
a are:

1. Microsoft Internet Information Services (11S) - web server supporting ASP.NET.

2. Microsoft SQL Server 2000 - the database server. This tutorial uses the desktop edition (MSDE), a free
download from Microsoft. Support for other databases is only a matter of changing the NHibernate SQL
dialect and driver configuration.

3. Microsoft Visua Studio .NET 2003 - the devel opment environment.

First, we have to create a new Web project. We use the name Qui ckst art , the project web virtual directory will
http://1ocal host/ Qui ckStart. In the project, add a reference to NHi ber nate. dl | . Visual Studio will auto-
matically copy the library and its dependencies to the project output directory. If you are using a database other
than SQL Server, add areference to the driver assembly to your project.

We now set up the database connection information for NHibernate. To do this, open the file web. conf i g auto-
matically generated for your project and add configuration elements according to the listing below:

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>

<l-- Add this elenent -->
<confi gSecti ons>
<section

nanme="hi ber nat e- confi gurati on"
type="NHi ber nat e. Cf g. Confi gurati onSecti onHandl er, NH ber nate"
/>
</ confi gSections>

<I-- Add this elenent -->
<hi ber nat e- confi gurati on xm ns="urn: nhi ber nat e-confi guration-2.0">
<sessi on-factory>
<property nane="di al ect " >NHi ber nat e. Di al ect. MsSql 20000 al ect </ pr operty>
<property nanme="connecti on. provi der">NHi ber nat e. Connecti on. Dri ver Connect i onPr ovi der </ pr opt
<property nane="connection.connection_string">Server=(local);initial catal og=quickstart;]|i

<mappi ng assenbl y="Qui ckStart" />
</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

<l-- Leave the system web section unchanged -->
<syst em web>

</ syst em web>
</ confi guration>

The <confi gSect i ons> element contains definitions of sections that follow and handlers to use to process their
content. We declare the handler for the configuration section here. The <hi ber nat e- conf i gur ati on> section
contains the configuration itself, telling NHibernate that we will use a Microsoft SQL Server 2000 database and
connect to it through the specified connection string. The dialect is a required setting, databases differ in their
interpretation of the SQL "standard". NHibernate will take care of the differences and comes bundled with dia-

NHibernate 1.0.2 1

Quickstart with 11S and Microsoft SQL Server

lects for several major commercia and open source databases.

An | Sessi onFact ory is NHibernate's concept of a single datastore, multiple databases can be used by creating
multiple XML configuration files and creating multiple Confi gur ati on and | Sessi onFact ory objects in your
application.

The last element of the <hi ber nat e- confi gur ati on> section declares Qui ckStart as the name of an assembly
containing class declarations and mapping files. The mapping files contain the metadata for the mapping of the
POCO class to a database table (or multiple tables). We'll come back to mapping files soon. Let's write the
POCO classfirst and then declare the mapping metadata for it.

1.2. First persistent class

NHibernate works best with the Plain Old CLR Objects (POCOs, sometimes called Plain Ordinary CLR Ob-
jects) programming model for persistent classes. A POCO has its data accessible through the standard .NET
property mechanisms, shielding the internal representation from the publicly visible interface:

usi ng System

nanespace Qui ckStart

{
public class Cat

{
private string id;
private string nane;
private char sex;
private float weight;

public Cat()

{
}

public string Id

{
get { return id; }
set { id = value; }

}

public string Nane
{

get { return nane; }
set { nane = val ue; }

}

public char Sex

{

get { return sex; }
set { sex = value; }

}

public float Wi ght

{
get { return weight; }

set { weight = value; }

}

NHibernate is not restricted in its usage of property types, all .NET types and primitives (like stri ng, char and
Dat eTi ne) can be mapped, including classes from the Syst em Col | ect i ons namespace. Y ou can map them as
values, collections of values, or associations to other entities. The 1 d is a special property that represents the
database identifier (primary key) of that class, it is highly recommended for entities like a cat . NHibernate can

NHibernate 1.0.2 2

Quickstart with 11S and Microsoft SQL Server

use identifiers only internally, without having to declare them on the class, but we would lose some of the flex-
ibility in our application architecture.

No special interface has to be implemented for persistent classes nor do we have to subclass from a special root
persistent class. NHibernate also doesn't use any build time processing, such as IL manipulation, it relies solely
on .NET reflection and runtime class enhancement (through Castle.DynamicProxy library). So, without any de-
pendency in the POCO class on NHibernate, we can map it to a database table.

1.3. Mapping the cat

The cat . hbm xmi mapping file contains the metadata required for the object/relational mapping. The metadata
includes declaration of persistent classes and the mapping of properties (to columns and foreign key relation-
ships to other entities) to database tables.

<?xm version="1.0" encodi ng="utf-8" ?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
nanespace="Qui ckStart" assenbl y="Qui ckStart">

<cl ass name="Cat" table="Cat">
<I-- A 32 hex character is our surrogate key. It's automatically

generated by NH bernate with the UU D pattern. -->
<id name="1d">

<col um nane="Cat | d" sql -type="char(32)" not-null="true"/>
<generator class="uui d. hex" />
</id>
<I-- A cat has to have a name, but it shouldn' be too long. -->
<property name="Name">
<col um nanme="Nane" | ength="16" not-null="true" />

</ property>

<property nane="Sex" />

<property nane="Wei ght" />
</ cl ass>

</ hi ber nat e- mappi ng>

Every persistent class should have an identifer attribute (actually, only classes representing entities, not depend-
ent value objects, which are mapped as components of an entity). This property is used to distinguish persistent
objects: Two cats are equal if cat A 1d. Equal s(catB. 1d) is true, this concept is called database identity.
NHibernate comes bundled with various identifer generators for different scenarios (including native generators
for database sequences, hi/lo identifier tables, and application assigned identifiers). We use the UUID generator
(only recommended for testing, as integer surrogate keys generated by the database should be prefered) and
also specify the column cat 1 d of the table cat for the NHibernate generated identifier value (as a primary key
of thetable).

All other properties of cat are mapped to the same table. In the case of the Nane property, we mapped it with an
explicit database column declaration. Thisis especialy useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with NHibernate's SchemaExport tool. All other
properties are mapped using NHibernate's default settings, which is what you need most of the time. The table
cat in the database looks like this:

Col um | Type | Modifiers
________ o
Catld | char(32) | not null, primry key
Name | nvarchar (16) | not nul

Sex | nchar (1) |

Wi ght | real |

NHibernate 1.0.2 3

Quickstart with 11S and Microsoft SQL Server

Y ou should now create the database and this table manually, and later read Chapter 15, Toolset Guide if you
want to automate this step with the SchemaExport tool. This tool can create a full SQL DDL, including table
definition, custom column type constraints, unique constraints and indexes. If you are using SQL Server, you
should also make sure the ASPNET user has permissions to use the database.

1.4. Playing with cats

We're now ready to start NHibernate's | Sessi on. It is the persistence manager interface, we use it to store and
retrieve Cat sto and from the database. But first, we've to get an | Sessi on (NHibernate's unit-of-work) from the
| Sessi onFactory:

| Sessi onFactory sessi onFactory =
new Configuration().Configure().Buil dSessionFactory();

An | SessionFactory is responsible for one database and may only use one XML configuration file
(veb. confi g oOr hi bernate. cfg. xn). You can set other properties (and even change the mapping metadata) by
accessing the Confi gur at i on before you build the | Sessi onFact ory (it isimmutable). Where do we create the
| Sessi onFact ory and how can we accessit in our application?

An | Sessi onFact ory is usualy only built once, e.g. at startup inside Appli cation_Start event handler. This
also means you should not keep it in an instance variable in your ASP.NET pages, but in some other location.
Furthermore, we need some kind of Sngleton, so we can access the | Sessi onFact ory easily in application
code. The approach shown next solves both problems: configuration and easy accessto al Sessi onFact ory.

We implement aNHi ber nat eHel per helper class:

usi ng System

usi ng System Wb;

usi ng NHi ber nat e;

usi ng NHi bernate. Cf g;

nanespace Qui ckStart

{

public seal ed cl ass NH ber nat eHel per

{
private const string Current Sessi onKey = "nhi bernate. current _session";
private static readonly | SessionFactory sessionFactory;

static NH bernat eHel per ()

{
sessi onFactory = new Configuration(). Configure().Buil dSessi onFactory();
}
public static |Session GetCurrent Session()
{
Ht t pCont ext context = HttpContext. Current;
| Sessi on current Session = context.|tens[Current Sessi onKey] as | Sessi on;
if (currentSession == null)
{
current Sessi on = sessi onFact ory. OpenSessi on();
context.|tens[Current Sessi onKey] = current Sessi on;
}
return current Session;
}

public static void Cl oseSession()

{
Ht t pCont ext context = HttpContext. Current;

| Sessi on current Session = context.|tens[Current Sessi onKey] as | Sessi on;

NHibernate 1.0.2 4

Quickstart with 11S and Microsoft SQL Server

if (currentSession == null)
{
/1 No current session
return;
}

current Sessi on. d ose();
context. | tens. Remove(Current Sessi onKey) ;

}
public static void C oseSessi onFactory()
{

if (sessionFactory != null)

{

sessi onFactory. d ose();

}

}

This class does not only take care of the | Sessi onFact ory with its static attribute, but also has code to remem-
ber the | Sessi on for the current HTTP request.

An | Sessi onFact ory is threadsafe, many threads can access it concurrently and request | Sessi onS. An | Ses-
si on is a non-threadsafe object that represents a single unit-of-work with the database. | Sessi ons are opened
by an | Sessi onFact ory and are closed when all work is completed:

| Sessi on session = NHi ber nat eHel per. Get Current Sessi on();
| Transaction tx = session. Begi nTransaction();

Cat princess = new Cat();

princess. Nane = "Princess";
princess. Sex = 'F';
princess. Wi ght = 7. 4f;

sessi on. Save(princess);
tx. Commit();

NHi ber nat eHel per. d oseSessi on() ;

In an | Sessi on, every database operation occurs inside a transaction that isolates the database operations (even
read-only operations). We use NHibernate's | Transacti on APl to abstract from the underlying transaction
strategy (in our case, ADO.NET transactions). Please note that the example above does not handle any excep-
tions.

Also note that you may call NHi ber nat eHel per . Get Curr ent Sessi on(); as many times asyou like, you will al-
ways get the current | Sessi on of this HTTP request. Y ou have to make sure the | Sessi on is closed after your
unit-of-work completes, either in Appl i cati on_EndRequest event handler in your application class or in a H -
t pModul e before the HTTP response is sent. The nice side effect of the latter is easy lazy initialization: the
I Sessi on isstill open when the view is rendered, so NHibernate can load unitialized objects while you navigate
the graph.

NHibernate has various methods that can be used to retrieve objects from the database. The most flexible way
is using the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented exten-
sionto SQL:

I Transaction tx = session. Begi nTransaction();

| Query query = session.CreateQuery("select ¢ fromcCat as ¢ where c.Sex = :sex");
query. Set Character("sex", "F');

NHibernate 1.0.2 5

Quickstart with 11S and Microsoft SQL Server

foreach (Cat cat in query. Enunerable())

{
}

tx. Commit();

Console. Qut. WitelLine("Female Cat: " + cat. Nane);

NHibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries.
NHibernate of course uses | DbConmands and parameter binding for all SQL communication with the database.
You may aso use NHibernate's direct SQL query feature or get a plain ADO.NET connection from an | Ses-
si on in rare cases.

1.5. Finally

We only scratched the surface of NHibernate in this small tutorial. Please note that we don't include any
ASP.NET specific code in our examples. You have to create an ASP.NET page yourself and insert the
NHibernate code as you seefit.

Keep in mind that NHibernate, as a data access layer, is tightly integrated into your application. Usually, all
other layers depend on the persistence mechanism. Make sure you understand the implications of this design.

NHibernate 1.0.2 6

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the NHibernate architecture:

Application

Persistent Objects

hibernate.
properties

HIBERNATE

XML Mapping

Database

This diagram shows NHibernate using the database and configuration data to provide persistence services (and

persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, NHibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own ADO.NET connections and manage its own transactions. This approach uses a minimal subset

of NHibernate's APIs:

Transient Objects Application
Persistent
Objects

SessionFactory Session | JDBC| JNDI JTA
Database

The "full cream" architecture abstracts the application away from the underlying ADO.NET APIs and lets

NHibernate 1.0.2

Architecture

NHibernate take care of the details.

Transient Objects Application

Persistent
Objects

SessionFactory

Session | Transaction

TransactionFactory ConnectionProvider

JNDI JDBC JTA

Database

Heres some definitions of the objectsin the diagrams:

| SessionFactory (NHi ber nat e. | Sessi onFact ory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for | Sessi on and a
client of | ConnectionProvider. Might hold an optional (second-level) cache of data that is reusable

between transactions, at a process- or cluster-level.

| Session (NHi ber nat e. | Sessi on)
A single-threaded, short-lived object representing a conversation between the application and the persistent

store. Wraps an ADO.NET connection. Factory for | Transact i on. Holds a mandatory (first-level) cache of
persistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent Objects and Collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary POCOs, the only special thing about them is that they are currently associated with (exactly one) | Ses-
si on. As soon as the Sessi on is closed, they will be detached and free to use in any application layer (e.g.
directly as data transfer objects to and from presentation).

Transient Objects and Collections
Instances of persistent classes that are not currently associated with a I Sessi on. They may have been in-
stantiated by the application and not (yet) persisted or they may have been instantiated by a closed | Ses-

si on.

I Transaction (NHi ber nat e. | Transact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying ADO.NET transaction. An | Sessi on might span severa | Tr ansac-

ti onSin some cases.

NHibernate 1.0.2 8

Architecture

| ConnectionProvider (NHi ber nat e. Connect i on. | Connect i onProvi der)
(Optional) A factory for ADO.NET connections and commands. Abstracts application from the concrete
vendor-specific implementations of | DbConnect i on and | DbCommand. Not exposed to application, but can
be extended/implemented by the devel oper.

IDriver (NHi bernate. Driver.|Driver)
(Optional) An interface encapsulating differences between ADO.NET providers, such as parameter naming
conventions and supported ADO.NET features.

| TransactionFactory (NHi ber nat e. Transacti on. | Transact i onFact ory)
(Optional) A factory for | Transacti on instances. Not exposed to the application, but can be extended/
implemented by the devel oper.

Given a"lite" architecture, the application bypasses the | Tr ansact i on/I Tr ansact i onFact ory and/or | Connec-
ti onProvi der APIstotalk to ADO.NET directly.

NHibernate 1.0.2 9

Chapter 3. ISessionFactory Configuration

Because NHibernate is designed to operate in many different environments, there are alarge number of config-
uration parameters. Fortunately, most have sensible default values and NHibernate is distributed with an ex-
ample App. confi g file (found in sr c\ NHi ber nat e. Test) that shows the various options. Y ou usually only have
to put that file in your project and customize it.

3.1. Programmatic Configuration

An instance of NH ber nat e. Cf g. Confi gurati on represents an entire set of mappings of an application's .NET
types to a SQL database. The Confi gurati on isused to build an (immutable) | Sessi onFact ory. The mappings
are compiled from various XML mapping files.

You may obtain a Confi gurati on instance by instantiating it directly. Heres an example of setting up a data-
store from mappings defined in two XML configuration files:

Configuration cfg = new Configuration()
.AddFi l e("Item hbm xm ")
. AddFi | e("Bi d. hbm xm ") ;

An aternative (sometimes better) way isto let NHibernate load a mapping file from an embedded resource;

Configuration cfg = new Configuration()
. AddCl ass(typeof (NHi bernate. Auction.lten))
. AddCl ass(typeof (NHi ber nat e. Auction.Bid));

Then NHibernate will look for mapping files named NHi ber nate. Auction. |tem hbm xmi and NHi ber n-
ate. Aucti on. Bi d. hom xni embedded as resources in the assembly that the types are contained in. This ap-
proach eliminates any hardcoded filenames.

Another alternative (probably the best) way is to let NHibernate load all of the mapping files contained in an
Assembly:

Configuration cfg = new Configuration()
. AddAssenbl y("NHi ber nate. Auction");

Then NHibernate will look through the assembly for any resources that end with . hom xm . This approach
eliminates any hardcoded filenames and ensures the mapping filesin the assembly get added.

If atool like Visual Studio .NET or NAnt is used to build the assembly, then make sure that the . hbom xm files
are compiled into the assembly as Enbedded Resour ces.

A Confi guration aso specifies various optional properties:

IDictionary props = new Hashtabl e();

Configuration cfg = new Configuration()
. AddCl ass(typeof (NHi ber nat e. Auction.lten))
. AddCl ass(t ypeof (NHi ber nat e. Aucti on. Bi nd))
. Set Properties(props);

A Confi gurati on isintended as a configuration-time object, to be discarded once an | Sessi onFact ory is built.

NHibernate 1.0.2 10

| SessionFactory Configuration

3.2. Obtaining an ISessionFactory

When al mappings have been parsed by the Conf i gur at i on, the application must obtain a factory for | Sessi on
instances. This factory isintended to be shared by all application threads:

| Sessi onFactory sessions = cfg. Buil dSessi onFactory();

However, NHibernate does allow your application to instantiate more than one | Sessi onFactory. Thisis use-
ful if you are using more than one database.

3.3. User provided ADO.NET connection

An | Sessi onFact ory may open an | Sessi on on a user-provided ADO.NET connection. This design choice
frees the application to obtain ADO.NET connections wherever it pleases:

| DbConnecti on conn = nyApp. Get OpenConnection();
| Sessi on sessi on = sessi ons. OpenSessi on(conn);

/! do sone data access work

The application must be careful not to open two concurrent | Sessi ons on the same ADO.NET connection!

3.4. NHibernate provided ADO.NET connection

Alternatively, you can have the I Sessi onFact ory open connections for you. The | Sessi onFact ory must be
provided with ADO.NET connection properties in one of the following ways:

1. Pass an instance of IDictionary mapping property names to property values to Confi gura-
tion. Set Properties().

2. Add the properties to a configuration section in the application configuration file. The section should be
named nhi ber nat e and its handler set to Syst em Conf i gur ati on. NameVal ueSect i onHandl er .

3. Include <propert y> elements in a configuration section in the application configuration file. The section
should be named hibernate-configuration and its handler set to NHibern-
ate. Cfg. ConfigurationSecti onHandl er. The XML namespace of the section should be set to
ur n: nhi ber nat e-confi guration-2.0.

4. Include <property> elementsin hi ber nat e. cf g. xm (discussed later).

If you take this approach, opening an | Sessi on isassimple as:

| Sessi on session = sessions. OQpenSession(); // open a new Session
/! do sone data access work, an ADO. NET connection will be used on demand

All NHibernate property names and semantics are defined on the class NHi ber nat e. Cf g. Envi r onnrent . We will
now describe the most important settings for ADO.NET connection configuration.

NHibernate will obtain (and pool) connections using an ADO.NET data provider if you set the following prop-
erties:

Table3.1. NHibernate ADO.NET Properties

NHibernate 1.0.2 11

| SessionFactory Configuration

Property name Purpose

hi ber nat e. connect i on. provi der _cl ass The type of acustom | Connect i onProvi der .

€g. ful | .cl assnane. of . Connect i onProvi der if the
Provider is built into NHibernate, or
full.classnane. of. Connecti onProvi der, as-
senbl y if using an implementation of |Connection-
Provider not included in NHibernate.

hi ber nat e. connecti on. driver_cl ass The type of a custom | Dri ver, if using Dri ver Con-
necti onProvi der.

full.classnanme. of. Driver if the Driver isbuilt into
NHibernate, or full.classname.of.Driver, as-
senbl y if using an implementation of IDriver not in-
cluded in NHibernate.

This is usualy not needed, most of the time the hi -
ber nat e. di al ect will take care of setting the IDriver
using a sensible default. See the APl documentation
of the specific IDialect for the defaults.

hi ber nat e. connecti on. connecti on_string Connection string to use to obtain the connection.

hi ber nat e. connecti on. i sol ati on Set the ADO.NET transaction isolation level. Check
System Dat a. | sol ati onLevel for meaningful values
and the database's documentation to ensure that level
IS supported.

€g. Chaos, ReadConmitted, ReadUncommitted, Re-
peat abl eRead, Serializable, Unspecified

Thisis an example of how to specify the database connection propertiesinside aweb. confi g:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<confi gSecti ons>
<section nanme="nhi bernate" type="System Confi guration. NanmeVal ueSecti onHandl er, System
Ver si on=1. 0. 5000. 0, Cul ture=neutral, PublicKeyToken=b77a5c561934e089" />
</ confi gSections>

<nhi ber nat e>
<add
key="hi ber nat e. connecti on. provi der"
val ue="NHi ber nat e. Connecti on. Dri ver Connect i onProvi der"

/>
<add
key="hi bernate. di al ect"
val ue="NHi ber nat e. Di al ect. MsSql 2000Di al ect"
/>
<add
key="hi ber nat e. connecti on. dri ver_cl ass"
val ue="NHi bernate. Driver.Sgl dientDriver"
/>
<add
key="hi ber nat e. connecti on. connecti on_string"
val ue="Server=127.0.0.1; Initial Catal og=thedatabase; |ntegrated Security=SSPl"
/>
<add

key="hi ber nat e. connection. i sol ati on"
val ue="ReadConmi tt ed"

NHibernate 1.0.2 12

| SessionFactory Configuration

/>
</ nhi ber nat e>

<I-- other app specific config follows -->
</ confi guration>

NHibernate relies on the ADO.NET data provider implementation of connection pooling.

You may define your own plugin strategy for obtaining ADO.NET connections by implementing the interface
NHi ber nat e. Connect i on. | Connect i onProvi der. YOU may select a custom implementation by setting hi ber n-
at e. connecti on. provi der _cl ass.

3.5. Optional configuration properties

There are a number of other properties that control the behaviour of NHibernate at runtime. All are optional and
have reasonable default values.

System-level properties can only be set manually by setting static properties of NHi ber nat e. Cf g. Envi r onnment
class or be defined in the <nhi ber nat e> section of the application configuration file. These properties cannot be
set using Confi gurati on. Set Properti es Or be defined in the <hi ber nat e- confi gur ati on> section of the ap-
plication configuration file.

Table 3.2. NHibernate Configuration Properties

Property name Purpose

hi ber nat e. di al ect The classname of a NHibernate Di al ect - enables
certain platform dependent features.

€g.full.classnane. of. Di al ect, assenbly

hi ber nat e. def aul t _schena Qualify unqualified tablenames with the given
schemaltablespace in generated SQL.

€g. SCHEMA_NAVE

hi ber nat e. use_outer_j oi n Enables outer join fetching. Deprecated, use
max_f et ch_dept h.

€g.true |fal se

hi ber nat e. max_f et ch_depth Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A o disables default outer join fetching.

eg. recommended values between 0 and 3

hi ber nat e. use_refl ecti on_optimi zer Enables use of a runtime-generated class to set or get
properties of an entity or component instead of using
runtime reflection (System-level property). The use of
the reflection optimizer inflicts a certain startup cost
on the application but should lead to better perform-
ance in the long run. You can not set this property in
hi ber nate. cfg. xm OF <hi bernat e-confi gurati on>

NHibernate 1.0.2 13

| SessionFactory Configuration

Property name

hi ber nat e. cache.

hi ber nat e. cache.

hi ber nat e. cache.

hi ber nat e. cache.

hi ber nat e. cache.

hi ber nat e. query.

provi der _cl ass

use_m ni mal _puts

use_query_cache

gquery_cache_factory

regi on_prefix

substitutions

hi ber nat e. show_sql

hi ber nat e. hbnRddl . aut o

3.5.1. SQL Dialects

Purpose

section of the application configuration file.

€g.true |fal se

The classname of a custom | CachePr ovi der .

€d. cl assnane. of . CacheProvi der, assenbly

Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads (useful for
clustered caches).

€g.true |fal se

Enable the query cache, individual queries still have
to be set cacheable.

€g.true |fal se

The classname of a custom | Quer yCacheFactory in-
terface, defaults to the built-in Stand-
ardQuer yCacheFactory.

€g. cl assnane. of . QueryCacheFactory, assenbly

A prefix to use for second-level cache region names.

€g. prefix

Mapping from tokens in NHibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

€g. hgl Li t eral =SQL_LI TERAL, hgl Func-
ti on=SQLFUNC

Write all SQL statements to console.

€g.true |fal se

Automatically export schema DDL to the database
when the | Sessi onFact ory is created. With creat e-
dr op, the database schema will be dropped when the
I Sessi onFact ory is closed explicitly.

€g.create |create-drop

Y ou should always set the hi ber nat e. di al ect property to the correct NHi ber nat e. Di al ect . b al ect subclass
for your database. Thisis not strictly essential unless you wish to use nat i ve Or sequence primary key genera
tion or pessimistic locking (with, eg. | Sessi on. Lock() Or I Query. Set LockMode()). However, if you specify a
dialect, NHibernate will use sensible defaults for some of the other properties listed above, saving you the ef-
fort of specifying them manually.

NHibernate 1.0.2

14

| SessionFactory Configuration

Table 3.3. NHibernate SQL Dialects (hi ber nat e. di al ect)

RDBMS Dialect

DB2 NHi ber nat e. Di al ect . DB2Di al ect
PostgreSQL NHi ber nat e. Di al ect . Post gr eSQLDi al ect
MySQL NHi ber nat e. Di al ect. MySQLDi al ect
Oracle (any version) NH ber nat e. Di al ect. Or acl eDi al ect
Oracle 9/10g NH ber nat e. Di al ect. Or acl e9Di al ect
Sybase NHi ber nat e. Di al ect . SybaseDi al ect

Microsoft SQL Server 2000 | NHi ber nat e. Di al ect. MsSql 20000 al ect

Microsoft SQL Server 7 NH ber nat e. Di al ect . MsSql 7Di al ect
Firebird NHi ber nat e. Di al ect . Fi r ebi r dDi al ect
SQLite NHi ber nat e. Di al ect. SQLi teDi al ect

Additional dialects may be available in the NHibernateContrib package (see Part I, “NHibernateContrib Docu-
mentation”). At the time of writing this package contains support for Microsoft Access (Jet) database engine.

3.5.2. Outer Join Fetching

If your database supports ANSI or Oracle style outer joins, outer join fetching might increase performance by
limiting the number of round trips to and from the database (at the cost of possibly more work performed by the
database itself). Outer join fetching allows a graph of objects connected by many-to-one, one-to-many or one-
to-one associations to be retrieved in asingle SQL SELECT.

By default, the fetched graph when loading an objects ends at leaf objects, collections, objects with proxies, or
where circularities occur.

For aparticular association, fetching may be enabled or disabled (and the default behaviour overridden) by set-
ting the out er - j oi n attribute in the XML mapping.

Outer join fetching may be disabled globally by setting the property hi ber nat e. max_f et ch_dept h t0 0. A set-
ting of 1 or higher enables outer join fetching for al one-to-one and many-to-one associations, which are, also
by default, set to aut o outer join. However, one-to-many associations and collections are never fetched with an
outer-join, unless explicitly declared for each particular association. This behavior can also be overriden at
runtime with Hibernate queries.

In NHibernate 1.0, f et ch attribute can be used instead of out er-j oi n. fet ch="j oi n" is equivalent to out er -

join="true",andfetch="sel ect" correspondstoout er-j oi n="fal se".

3.5.3. Custom | CacheProvi der

You may integrate a process-level (or clustered) second-level cache system by implementing the interface
NHi ber nat e. Cache. | CacheProvider. You may select the custom implementation by setting hi bern-
at e. cache. provi der _cl ass.

NHibernate 1.0.2 15

| SessionFactory Configuration

3.5.4. Query Language Substitution

Y ou may define new NHibernate query tokens using hi ber nat e. query. substi t uti ons. For example:

hi ber nat e. query. substitutions true=1, fal se=0

would cause the tokenst rue and f al se to be trandated to integer literals in the generated SQL .

hi ber nat e. query. substituti ons toLowercase=LOAER

would allow you to rename the SQL LOWER function.

3.6. Logging

NHibernate logs various events using Apache log4net.

You may download log4net from http://1 oggi ng. apache. org/ | og4net/. To use logdnet you will need a
I og4net configuration section in the application configuration file. An example of the configuration section is
distributed with NHibernate in the sr c/ NHi ber nat e. Test project.

We strongly recommend that you familiarize yourself with NHibernate's log messages. A lot of work has been
put into making the NHibernate log as detailed as possible, without making it unreadable. It is an essential
troubleshooting device. Also don't forget to enable SQL logging as described above (hi ber nat e. show_sql), it
isyour first step when looking for performance problems.

3.7. Implementing an | Nami ngSt r at egy

The interface NHi ber nat e. Cf g. | Nari ngSt r at egy allows you to specify a "naming standard” for database ob-
jects and schema elements.

Y ou may provide rules for automatically generating database identifiers from .NET identifiers or for processing
"logical" column and table names given in the mapping file into "physical" table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by NHibernate is quite minimal.

You may specify a different strategy by calling Confi gurati on. Set Nami ngStrat egy() before adding map-
pings:

| Sessi onFactory sf = new Confi guration()
. Set Nami ngSt r at egy(| nprovedNam ngStrat egy. | nst ance)
.AddFi |l e("1tem hbm xm ")
. AddFi | e("Bi d. hbm xni ")
. Bui | dSessi onFactory();

NH ber nat e. Cf g. | npr ovedNani ngSt r at egy IS a built-in strategy that might be a useful starting point for some
applications.

3.8. XML Configuration File

An alternative approach is to specify a full configuration in a file named hi ber nat e. cf g. xm . This file can be
used as a replacement for the <nhi ber nat e; > Or <hi ber nat e- conf i gur at i on> sections of the application con-

NHibernate 1.0.2 16

| SessionFactory Configuration

figuration file.
The XML configuration file is by default expected to be in your application directory. Here is an example:

<?xm version='"1.0" encodi ng='utf-8" ?>
<hi ber nat e- confi gurati on xm ns="ur n: nhi ber nat e-confi gurati on-2.0">

<I-- an | SessionFactory instance -->
<sessi on-factory>

<I-- properties -->

<property nane="connection. provi der">NH ber nat e. Connecti on. Dri ver Connect i onProvi der </ property:
<property nanme="connection.driver_class">NH bernate.Driver.SqlCientDriver</property>
<property nane="connection.connection_string">Server=local host;initial catal og=nhi bernate; Usel
<property nanme="show_sql ">fal se</property>

<property nane="di al ect">NHi ber nat e. Di al ect. MsSql 20000 al ect </ pr operty>

<property nane="use_outer_join">true</property>

<I-- mapping files -->

<mappi ng resource="NHi bernate. Auction.|ltem hbm xm " assenbl y="NH ber nat e. Aucti on" />

<mappi ng resour ce="NHi ber nat e. Aucti on. Bi d. hbm xm " assenbl y="NHi ber nat e. Auction" />
</ sessi on-factory>

</ hi ber nat e- confi gurati on>

Configuring NHibernate is then as simple as

| Sessi onFactory sf = new Configuration(). Configure().Buil dSessionFactory();

You can pick adifferent XML configuration file using

| Sessi onFactory sf = new Confi guration()
.Configure("/path/to/config.cfg.xm")
. Bui | dSessi onFactory();

NHibernate 1.0.2 17

Chapter 4. Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Persistent classes have, as the name implies, transient and also
persistent instance stored in the database.

NHibernate works best if these classes follow some simple rules, aso known as the Plain Old CLR Object
(POCO) programming model.

4.1. A simple POCO example

Most .NET applications require a persistent class representing felines.

usi ng System
using lesi.Collections;

namespace Eg

{

public class Cat

{

private long id; // identifier
private string name;

private DateTime birthdate;
private Cat mate;

private | Set kittens

private Col or color;

private char sex;

private float weight;

publ

ic virtual long Id

get { return id; }

set { id = value; }

ic virtual string Nane
get { return nane; }

set { nane = value; }

ic virtual Cat Mate

get { return mate; }

set { mate = value; }

ic virtual DateTime Birthdate
get { return birthdate; }
set { birthdate = val ue; }
ic virtual float Weight
get { return weight; }
set { weight = value; }
ic virtual Color Color

get { return color; }
set { color = value; }

NHibernate 1.0.2

18

Persistent Classes

public virtual 1Set Kittens

{

get { return kittens; }
set { kittens = val ue; }

}

/1 AddKitten not needed by NHi bernate
public virtual void AddKitten(Cat Kitten)
{

}

kittens. Add(kitten);

public virtual char Sex

{

get { return sex; }
set { sex = value; }

}

There are four main rulesto follow here:

4.1.1. Declare accessors and mutators for persistent fields

cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist instance vari-
ables. We believe it is far better to decouple this implementation detail from the persistence mechanism.
NHibernate persists properties, using their getter and setter methods.

Properties need not be declared public - NHibernate can persist a property with ani nt er nal , pr ot ect ed, pro-

tected internal OfF private vishility.

4.1.2. Implement a default constructor

cat has an implicit default (no-argument) constructor. All persistent classes must have a default constructor
(which may be non-public) so NHibernate can instantiate them using Const ruct or I nf o. I nvoke(nul 1) .

4.1.3. Provide an identifier property (optional)

cat has a property called 1d. This property holds the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, st ri ng Or Syst em Dat eTi re.
(If your legacy database table has composite keys, you can even use a user-defined class with properties of
these types - see the section on composite identifiers below.)

The identifier property is optional. You can leave it off and let NHibernate keep track of object identifiers in-
ternally. However, for many applicationsit is still agood (and very popular) design decision.

What's more, some functionality is available only to classes which declare an identifier property:

e Cascaded updates (see "Lifecycle Objects")
* | Session. SaveOr Updat e()

We recommend you declare consistently-named identifier properties on persistent classes.

4.1.4. Prefer non-sealed classes and virtual methods (optional)

NHibernate 1.0.2 19

Persistent Classes

A central feature of NHibernate, proxies, depends upon the persistent class being non-sealed and al its meth-
ods, properties and events declared as virtual. Another possibility is for the class to implement an interface that
declares al public members.

You can persist seal ed classes that do not implement an interface and don't have virtual members with
NHibernate, but you won't be able to use proxies - which will limit your options for performance tuning some-
what.

4.2. Implementing inheritance

A subclass must aso observe the first and second rules. It inherits its identifier property from cat .

usi ng System
nanespace Eg

{
public class DonesticCat : Cat

{

private string name;

public virtual string Name

{

get { return nane; }
set { nane = value; }

4.3. Implementing Equal s() and Get HashCode()

You have to override the Equal s() and Get HashCode() methods if you intend to mix objects of persistent
classes(e.g.inan| Set).

This only applies if these objects are loaded in two different | Sessi ons, as NHibernate only guarantees identity
(a == b , the default implementation of Equal s()) inside asingle | Sessi on!

Even if both objecs a and b are the same database row (they have the same primary key value as their identifi-
er), we can't guarantee that they are the same object instance outside of a particular | Sessi on context.

The most obvious way is to implement Equal s() /Get HashCode() by comparing the identifier value of both ob-
jects. If the value is the same, both must be the same database row, they are therefore equal (if both are added
to an 1 set, we will only have one element in the | set). Unfortunately, we can't use that approach. NHibernate
will only assign identifier values to objects that are persistent, a newly created instance will not have any identi-
fier value! We recommend implementing Equal s() and Get HashCode() using Business key equality.

Business key equality means that the Equal s() method compares only the properties that form the business
key, akey that would identify our instance in the real world (a natural candidate key):

public class Cat
{

public override bool Equal s(object other)

{

if (this == other) return true;

Cat cat = other as Cat;
if (cat == null) return false; // null or not a cat

NHibernate 1.0.2 20

Persistent Classes

if (Nane != cat.Nane) return false;
if (!Birthday. Equal s(cat.Birthday)) return false;

return true;

}
public override int GetHashCode()
{
unchecked
{
int result;

result = Name. Get HashCode() ;
result = 29 * result + Birthday. Get HashCode();
return result;

Keep in mind that our candidate key (in this case a composite of name and birthday) has to be only valid for a
particular comparison operation (maybe even only in a single use case). We don't need the stability criteriawe
usually apply to areal primary key!

4.4. Lifecycle Callbacks

Optionally, a persistent class might implement the interface I Li f ecycl e which provides some callbacks that al-
low the persistent object to perform necessary initialization/cleanup after save or load and before deletion or
update.

The NHibernate | | nt er cept or offersalessintrusive alternative, however.

public interface ILifecycle

{ (1)
Li fecycl eVeto OnSave(l Session s); (2)
Li fecycl eVet o OnUpdat e(| Sessi on s); (3)
Li fecycl eVeto OnDel et e(| Session s); (4)

voi d OnLoad(| Session s, object id);

(1) nSave - caled just before the object is saved or inserted

(2) OnUpdat e - called just before an object is updated (when the object is passed to | Sessi on. Updat e())
(3) Onbel ete - called just before an object is deleted

(4) OnLoad - caled just after an object isloaded

nSave(), OnDel et e() and OnUpdat e() May be used to cascade saves and deletions of dependent objects. This
is an aternative to declaring cascaded operations in the mapping file. onLoad() may be used to initiaize transi-
ent properties of the abject from its persistent state. It may not be used to load dependent objects since the
I Sessi on interface may not be invoked from inside this method. A further intended usage of nLoad(), On-
Save() and OnUpdat e() isto store areferenceto the current | Sessi on for later use.

Note that onupdat e() is not called every time the object's persistent state is updated. It is called only when a
transient object is passed to | Sessi on. Updat e() .

If OnSave(), OnUpdate() Or OnDel ete() return Lifecycl eVet o. Vet o, the operation is silently vetoed. If a
Cal | backExcept i on isthrown, the operation is vetoed and the exception is passed back to the application.

Note that onsave() is called after an identifier is assigned to the object, except when native key generation is

NHibernate 1.0.2 21

Persistent Classes

used.

4.5. IValidatable callback

If the persistent class needs to check invariants before its state is persisted, it may implement the following in-
terface:

public interface |Validatable

{
}

voi d Validate();

The object should throw aVval i dat i onFai | ur e if an invariant was violated. An instance of val i dat abl e should
not change its state from inside val i dat e() .

Unlike the callback methods of the I Li fecycl e interface, val i dat e() might be called at unpredictable times.
The application should not rely upon callsto val i dat e() for business functionality.

NHibernate 1.0.2 22

Chapter 5. Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings are defined in an XML document. The mapping document is designed to be read-

able and hand-editable. The mapping language is object-centric, meaning that mappings are constructed around
persistent class declarations, not table declarations.

Note that, even though many NHibernate users choose to define XML mappings by hand, a number of tools ex-
ist to generate the mapping document, including NHibernate.Mapping.Attributes library and various template-
based code generators (CodeSmith, MyGeneration).

Let'skick off with an example mapping:

<?xm version="1.0"?>

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0" assenbl y="Eg"
namespace="Eg" >

<cl ass nanme="Cat" tabl e="CATS" discri m nator-val ue="C'>
<id name="1d" colum="uid" type="Int64">
<generator class="hilo"/>
</id>
<di scri m nat or col um="subcl ass" type="Char"/>
<property nane="BirthDate" type="Date"/>
<property nane="Col or" not-null="true"/>
<property nane="Sex" not-null="true" update="fal se"/>
<property nane="Wei ght"/>
<many-t o- one nane="Mte" colum="mate_id"/>
<set name="Kittens">
<key col um="not her _i d"/>
<one-to-nmany class="Cat"/>
</set>
<subcl ass nanme="Donesti cCat" di scri m nator-val ue="D">
<property name="Name" type="String"/>
</ subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<l-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by NHibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not - nul | attribute.)

5.1.1. XML Namespace

All XML mappings should declare the XML namespace shown. The actual schema definition may be found in
the sr c\ nhi ber nat e- mappi ng- 2. 0. xsd file in the NHibernate distribution.

Tip: to enable IntelliSense for mapping and configuration files, copy the appropriate . xsd filesto <vs. NET i n-
stallation directory>\ Common7\ Packages\ schenmas\ xm .

5.1.2. hibernate-mapping

NHibernate 1.0.2 23

Basic O/R Mapping

This element has several optional attributes. The schera attribute specifies that tables referred to by this map-
ping belong to the named schema. If specified, tablenames will be qualified by the given schema name. If miss-
ing, tablenames will be unqualified. The def aul t - cascade attribute specifies what cascade style should be as-
sumed for properties and collections which do not specify a cascade attribute. The aut o-i nmport attribute lets
us use unqualified class names in the query language, by default. The assenbl y and nanmespace attributes spe-
cify the assembly where persistent classes are located and the namespace they are declared in.

<hi ber nat e- mappi ng

schema="schenmaNane" (1)
def aul t - cascade="none| save- updat e" (2)
aut o-i mport="true|fal se" (3)
assenbl y="Eg" (4)
nanespace="Eg" (5)

/>

(1) schema (optiona): The name of a database schema.
(2) defaul t-cascade (optional - defaultsto none): A default cascade style.
(3) auto-inport (optiona - defaults to true): Specifies whether we can use unqualified class names (of
classes in this mapping) in the query language.

(assenbl y and nanmespace(optional): Specify assembly and namespace to assume for unqualified class
5 namesin the mapping document.

4
Ef)y)ou are not using assenbl y and namespace attributes, you have to specify fully-qualified class names, includ-
ing the name of the assembly that classes are declared in.
If you have two persistent classes with the same (unqualified) name, you should set aut o-i nport ="fal se".
NHibernate will throw an exception if you attempt to assign two classes to the same "imported” name.

5.1.3. class

Y ou may declare a persistent class using the cl ass element:

<cl ass
nanme="C assNane" (1)
tabl e="t abl eNane" (2)
di scri m nat or - val ue="di scri m nat or _val ue" (3)
mut abl e="true| f al se” (4)
schema="owner" (5)
proxy="Proxyl nterface" (6)
dynam c- updat e="true| f al se" (7)
dynami c-insert="true|fal se" (8)
sel ect - bef or e- updat e="true| f al se" (9)
pol ymor phi sme"implicit|explicit" (10)
where="arbitrary sql where condition" (11)
persi ster="PersisterC ass" (12)
bat ch-si ze="N" (13)
optimstic-lock="none|version|dirty|all"” (14)
| azy="true| fal se" (15)

/>

(1) nane: The fully qualified .NET class name of the persistent class (or interface), including its assembly
name.

(2) tabl e: The name of its database table.

(3) discrimnator-val ue (optional - defaults to the class name): A value that distiguishes individual sub-
classes, used for polymorphic behaviour. Acceptable valuesinclude nul I and not nul I .

(4) mutabl e (optional, defaultstot r ue): Specifies that instances of the class are (not) mutable.

(5) schenma (optional): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

(6) proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of

NHibernate 1.0.2 24

Basic O/R Mapping

the classitsalf.

(7) dynani c-updat e (optional, defaults to f al se): Specifies that UPDATE SQL should be generated at runtime
and contain only those columns whose values have changed.

(8) dynanic-insert (optional, defaultsto f al se): Specifies that | NSERT SQL should be generated at runtime
and contain only the columns whose values are not null.

(9) sel ect-before-updat e (optional, defaultsto f al se): Specifies that NHibernate should never perform an
SQL UPDATE unlessit is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using updat e()), this means that NHibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

(10) pol ymor phi sm(optional, defaultstoi npl i ci t): Determines whether implicit or explicit query polymorph-
ismis used.

(11) wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class

(12) persister (optional): Specifiesacustom | d assPersi ster.

(13) bat ch-si ze (optional, defaultsto 1) specify a"batch size" for fetching instances of this class by identifier.

(14) optinistic-1ock (optional, defaultsto ver si on): Determines the optimistic locking strategy.

(15) lazy (optional): Setting | azy="true" is a shortcut equalivalent to specifying the name of the class itself
asthe proxy interface.

It is perfectly acceptable for the named persistent class to be an interface. Y ou would then declare implement-
ing classes of that interface using the <subcl ass> element. Y ou may persist any inner class. Y ou should specify
the class name using the standard form ie. Eg. Foo+Bar, Eg. Dueto an HQL parser limitation inner classes can
not be used in queriesin NHibernate 1.0.

Immutable classes, nut abl e="f al se", may not be updated or deleted by the application. This allows NHibern-
ate to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. NHibernate will ini-
tially return proxies which implement the named interface. The actual persistent object will be loaded when a
method of the proxy isinvoked. See "Proxiesfor Lazy Initialization” below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only be queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <cl ass> declaration as a<subcl ass> 0Or <j oi ned- subcl ass>. For most purposes the defaullt,
pol yror phi sme"inplicit", is appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this alows a"lightweight" class that contains a subset of the table columns).

The persi st er attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of NHi ber nat e. Persi ster. EntityPersister Or you might even provide a com-
pletely new implementation of the interface NHi ber nat e. Persi ster. | d assPersi ster that implements per-
sistence via, for example, stored procedure cals, seridization to flat files or LDAP. See NHi bern-
at e. Domai nhbdel . Cust onPer si st er for asimple example (of "persistence” to aHasht abl e).

Note that the dynani c- updat e and dynami c-i nsert Settings are not inherited by subclasses and so may aso be
specified on the <subcl ass> Of <j oi ned- subcl ass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judicioudly.

Use of sel ect - bef or e- updat e Will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

« versi on check the version/timestamp columns

NHibernate 1.0.2 25

Basic O/R Mapping

e all check al columns
e dirty check the changed columns
* none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with NHibernate.
Thisisthe optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made outside of the session (ie. when | Sessi on. Updat e() is used). Keep in mind that a version or
timestamp property should never be null, no matter what unsaved- val ue strategy, or an instance will be detec-
ted as transient.

5.14.id

Mapped classes must declare the primary key column of the database table. Most classes will also have a prop-
erty holding the unigue identifier of an instance. The <i d> element defines the mapping from that property to
the primary key column.

<id
nanme="Pr oper t yNane" (1)
type="t ypenane" (2)
col um="col unm_nane" (3)
unsaved- val ue="any| none| nul | | i d_val ue" (4)
access="fiel d| property| nosetter|d assNane(5)">
<generator class="generatordC ass"/>

</id>

(1) name (optional): The name of the identifier property.

(2) type (optiona): A name that indicates the NHibernate type.

(3) col um (optional - defaults to the property name): The name of the primary key column.

(4) unsaved-val ue (optional - defaults to a "sensible" value): An identifier property value that indicates that
an instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in a previous session.

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

If the nane attribute is missing, it is assumed that the class has no identifier property.
The unsaved- val ue atribute is almost never needed in NHibernate 1.0.

There is an alternative <conposi t e-i d> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

5.1.4.1. generator

The required <gener at or > child element names a .NET class used to generate unique identifiers for instances
of the persistent class. If any parameters are required to configure or initialize the generator instance, they are
passed using the <par an> element.

<id name="1d" type="Int64" col um="ui d" unsaved-val ue="0">
<generator class="NH bernate.|d. Tabl eH LoGenerator">
<par am nane="t abl e" >ui d_t abl e</ par an>
<par am nane="col utm" >next _hi _val ue_col utm</ par an»
</ gener at or >
</id>

NHibernate 1.0.2 26

Basic O/R Mapping

All generators implement the interface NHi bernate. I1d. I 1 dentifierGenerator. Thisis a very simple inter-
face; some applications may choose to provide their own specialized implementations. However, NHibernate
provides arange of built-in implementations. There are shortcut names for the built-in generators:

i ncrenment
generates identifiers of type I nt 64, I nt 16 or | nt 32 that are unique only when no other process isinserting
datainto the same table. Do not usein a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server and Sybase. The identifier returned by the
database is converted to the property type using Convert. ChangeType. Any integral property type is thus
supported.

sequence
uses a sequence in DB2, PostgreSQL, Oracle or a generator in Firebird. The identifier returned by the data-
base is converted to the property type using Convert . ChangeType. Any integral property type is thus sup-
ported.

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type I nt 16, I nt 32 or I nt 64, given a table and
column (by default hi ber nat e_uni que_key and next _hi respectively) as a source of hi values. The hi/lo al-
gorithm generates identifiers that are unique only for a particular database. Do not use this generator with a
user-supplied connection.

seghil o
uses a hi/lo algorithm to efficiently generate identifiers of type I nt 16, I nt 32 or | nt 64, given a named data-
base sequence.

uui d. hex
uses System Gui d and its ToString(string format) method to generate identifiers of type string. The
length of the string returned depends on the configured f or mat .

uui d. string
uses anew Syst em Gui d to create abyt e[] that is converted to a string.

gui d
uses anew Syst em Gui d astheidentifier.

gui d. conb
uses the algorithm to generate a new System Guid described by Jimmy Nilsson in the article ht-
tp:/Iwww.informit.com/articles/article.asp?p=25862.

native
picksi dentity, sequence Or hi | o depending upon the capabilities of the underlying database.

assi gned
lets the application to assign an identifier to the object before save() iscalled.

foreign
uses the identifier of another associated object. Usually used in conjunction with a <one-t o- one> primary
key association.

5.1.4.2. Hi/Lo Algorithm

NHibernate 1.0.2 27

Basic O/R Mapping

The hil o and seqhi | o generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-
proach to identifier generation. The first implementation requires a "specia" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="1d" type="Int64" colum="cat_id">
<generator class="hilo">
<param nane="t abl " >hi _val ue</ par anr
<par am nane="col utm" >next _val ue</ par an>
<par am nane="max_| 0" >100</ par an»
</ gener at or >
</id>

<id name="1d" type="Int64" col um="cat _id">
<generator class="seqghil o">
<par am nane="sequence" >hi _val ue</ par an»
<par am nane="nmax_| 0" >100</ par an>
</ gener at or >
</id>

Unfortunately, you can't use hi | o when supplying your own | bbConnect i on to NHibernate. NHibernate must
be able to fetch the "hi" value in a new transaction.

5.1.4.3. UUID Hex Algorithm

<id name="1d" type="String" colum="cat_id">
<gener ator cl ass="uui d. hex">
<par am nanme="f or mat " >f or mat _val ue</ par an»
<par am nane="seper at or " >seper at or _val ue</ par an»
</ gener at or >
</id>

The UUID is generated by calling Gui d. NewGui d(). ToString(format). The valid values for f ormat are de-
scribed in the MSDN documentation. The default seper at or is- and should rarely be modified. The f or mat
determines if the configured seper at or can replace the default seperator used by the f or mat .

5.1.4.4. UUID String Algorithm

The UUID is generated by calling Gui d. NewGui d() . ToByt eArray() and then converting the byte[] into a
char[]. Thechar[] isreturned asastring consisting of 16 characters.

5.1.4.5. GUID Algorithms

The gui d identifier is generated by calling Gui d. NewGui d() . To address some of the performance concerns with
using Guids as primary keys, foreign keys, and as part of indexes with MS SQL the gui d. conb can be used.
The benefit of using the gui d. conb with other databases that support GUIDs has not been measured.

5.1.4.6. Identity columns and Sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may usei dentity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence Style key generation. Both these strategies require two SQL queries to insert a new object.

<id name="1d" type="Int64" col um="uid">
<generator class="sequence">
<par am nane="sequence" >ui d_sequence</ par an>
</ gener at or >
</id>

NHibernate 1.0.2 28

Basic O/R Mapping

<id name="1d" type="Int64" col um="uid" unsaved-val ue="0">
<generator class="identity"/>
</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo
strategies, dependent upon the capabilities of the underlying database.

5.1.4.7. Assigned Identifiers

If you want the application to assign identifiers (as opposed to having NHibernate generate them), you may use
the assi gned generator. This special generator will use the identifier value already assigned to the object's iden-
tifier property. Be very careful when using this feature to assign keys with business meaning (almost always a
terrible design decision).

Due to its inherent nature, entities that use this generator cannot be saved via the |Session's SaveOrUpdate()
method. Instead you have to explicitly specify to NHibernate if the object should be saved or updated by calling
either the Ssave() or Updat e() method of the | Session.

5.1.5. composite-id

<conposite-id
name="Pr opert yNanme"
cl ass="C assNane"
unsaved- val ue="any| none"
access="fiel d| property| nosetter| d assNane" >

<key- property nanme="PropertyNane" type="typenane" col um="col um_nane"/>
<key- many-t o- one name="PropertyNanme class="C assNane" col umm="col umm_nane"/>

</ conposi te-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<conposi t e-i d> element accepts <key- property> property mappings and <key- many- t o- one> mappings as
child elements.

<conposi te-id>
<key- property nanme="Medi car eNunber" />
<key- property name="Dependent"/>

</ conposite-id>

Y our persistent class must override Equal s() and Get HashCode() to implement composite identifier equality. It
must also be Seri al i zabl e.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. Y ou must instantiate an instance of the persistent class it-
self and populate its identifier properties before you can | oad() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
seperate class in Section 7.4, “ Components as composite identifiers’. The attributes described below apply only
to this alternative approach:

« nane (optional, required for this approach): A property of component type that holds the composite identifi-
er (see next section).

e access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

* class (optiona - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

NHibernate 1.0.2 29

Basic O/R Mapping

5.1.6. discriminator

The <di scri mi nat or > element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: Stri ng, Char, I nt 32, Byt e, Short, Bool ean, YesNo, Tr ueFal se.

<di scri m nat or
col um="di scri m nator _col um" (1)

type="di scrim nat or _type" (2)
force="true|fal se" (3)
insert="true|fal se" (4)

/>

(1) col um (optional - defaultsto cl ass) the name of the discriminator column.

(2) type (optiona - defaultsto St ri ng) a name that indicates the NHibernate type

(3) force (optiona - defaults to fal se) "force” NHibernate to specify allowed discriminator values even
when retrieving all instances of the root class.

(4) insert (optiona - defaultstotrue) set thistofal se if your discriminator column is also part of a mapped
composite identifier.

Actual values of the discriminator column are specified by the di scri mi nat or - val ue attribute of the <cl ass>
and <subcl ass> elements.

The force attribute is (only) useful if the table contains rows with "extra' discriminator values that are not
mapped to a persistent class. Thiswill not usually be the case.

5.1.7. version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. Thisis particularly use-
ful if you plan to use long transactions (see below).

<versi on
col um="ver si on_col um" (1)
name="Pr oper t yNanme" (2)
type="t ypenane" (3)
access="fiel d| property| nosetter| C assNane" (4)
unsaved- val ue="nul | | negati ve| undef i ned| val ue" (5)
/>

(1) col um (optional - defaults to the property name): The name of the column holding the version number.

(2) nane: The name of aproperty of the persistent class.

(3) type (optiona - defaultsto I nt 32): The type of the version number.

(4) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(5) unsaved-val ue (optional - defaults to a "sensible” value): A version property value that indicates that an
instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in aprevious session. (undef i ned specifiesthat the identifier property value should be used.)

Version numbers may be of type i nt 64, | nt 32, I nt 16, Ti cks, Ti mest anp, Of Ti meSpan.

5.1.8. timestamp (optional)

The optional <t i mest anp> element indicates that the table contains timestamped data. Thisisintended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,

NHibernate 1.0.2 30

Basic O/R Mapping

sometimes the application might use the timestampsin other ways.

<ti nest anp

/>

(1
(2)
(3)

(4

col um="ti mest anp_col um" (1)
nanme="Pr oper t yNane" (2)
access="fiel d| property| nosetter| d as(3)sNane"
unsaved- val ue="nul | | undefi ned| val ue" (4)

col unm (optional - defaults to the property name): The name of a column holding the timestamp.

nane: The name of aproperty of .NET type Dat eTi e of the persistent class.

access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

unsaved- val ue (optional - defaultsto nul 1): A timestamp property value that indicates that an instance is
newly instantiated (unsaved), distinguishing it from transient instances that were saved or loaded in a pre-
vious session. (undef i ned specifies that the identifier property value should be used.)

Note that <t i mest anp> isequivalent to <ver si on type="ti mest anp">.

5.1.

9. property

The <pr oper t y> element declares a persistent property of the class.

<property
nane="pr opert yNane" (1)
col um="col unmm_nane" (2)
type="t ypenane" (3)
updat e="true| f al se" (4)
insert="true|fal se" (4)

/>

(D
(2)
(3)
(4

(5)

(6)

formul a="arbitrary SQL expression" (5)
access="fi el d| property| Cl assNane" (6)

name: the name of the property of your class.

col umm (optional - defaults to the property name): the name of the mapped database table column.

t ype (optional): a name that indicates the NHibernate type.

update, insert (optional - defaultsto true) : specifies that the mapped columns should be included in
SQL uPDATE and/or | NSERT statements. Setting both to fal se allows a pure "derived" property whose
value is initialized from some other property that maps to the same column(s) or by atrigger or other ap-
plication.

formul a (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

typename could be:

1

3.
4.
5.

The name of a NHibernate basic type (eg. 1nt32, String, Char, DateTinme, Tinestanp, Single,

Byte[], Ovject, ...).
The name of a .NET type with a default basic type (eg. System I nt 16, System Si ngle, System Char,
System String, System DateTinme, System Byte[], ...).

The name of an enumeration type (eg. Eg. Col or, Eg).
The name of aseridizable .NET type.
The class name of a custom type (eg. I | | 1 ow. Type. MyCust onfType).

Note that you have to specify full assembly-qualified names for all except basic NHibernate types (unless you
set assenbl y and/or nanmespace attributes of the <hi ber nat e- mappi ng> element).

NHibernate 1.0.2 31

Basic O/R Mapping

If you do not specify atype, NHibernate will use reflection upon the named property to take a guess at the cor-
rect NHibernate type. NHibernate will try to interpret the name of the return class of the property getter using
rules 2, 3, 4 in that order. However, this is not always enough. In certain cases you will still need the t ype at-
tribute. (For example, to distinguish between NHi ber nat e. Dat eTi me and NHi ber nat e. Ti mest anp, Of t0 specify
acustom type.)

The access attribute lets you control how NHibernate will access the value of the property at runtime. The
value of the access attribute should be text formatted as access-strategy. naning-strategy. The
. nani ng- st r agey isnot aways required.

Table5.1. Access Strategies
Access Strategy Name Description

property
The default implementation. NHibernate uses the get/

set accessors of the property. No naming strategy
should be used with this access strategy because the
value of the name attribute is the name of the prop-
erty.

field
NHibernate will access the field directly. NHibernate

uses the value of the nane attribute as the name of the
field. This can be used when a property's getter and
setter contain extra actions that you don't want to oc-
cur when NHibernate is populating or reading the ob-
ject. If you want the name of the property and not the
field to be what the consumers of your API use with
HQL, then anaming strategy is needed.

nosetter
NHibernate will access the field directly when setting

the value and will use the Property when getting the
value. This can be used when a property only exposes
a get accessor because the consumers of your API
can't change the value directly. A naming strategy is
required because NHibernate uses the value of the
name attribute as the property nhame and needs to be
told what the name of thefield is.

Cl assName
If NHibernate's built in access strategies are not what

is needed for your situation then you can build your
own by implementing the interface NHi bern-
ate. Property. | PropertyAccessor. The value of the
access attribute should be an assembly-qualified
name that can be loaded with Activat-
or. Createl nstance(string assenbl yQual i fi ed-
Nare) .

Table5.2. Naming Strategies

NHibernate 1.0.2 32

Basic O/R Mapping

Naming Strategy Name Description

canel case
The name attribute is converted to camel case to find
the field. <property nanme="Foo" ... > Uuses the
field f oo.

canel case-underscore _ _
The name attribute is converted to camel case and pre-

fixed with an underscore to find the field. <property

name="Foo" ... > usesthefield foo.

| ower case
The nane attribute is converted to lower case to find
the Field. <property nane="FooBar" ... > usesthe
field f oobar.

| ower case- under score _ _
The nane attribute is converted to lower case and pre-

fixed with an underscore to find the Field. <pr operty
name="FooBar" ... > usesthefield foobar.

pascal case-underscore _) _ .
The nane attribute is prefixed with an underscore to

find the field. <property name="Foo" ... > usesthe
field _Foo.

pascal case- m under score
The nare attribute is prefixed with the character mand

an underscore to find the field. <property
name="Foo" ... > usesthefield m Foo.

5.1.10. many-to-one

An ordinary association to another persistent class is declared using a nany-t o- one element. The relational
model is a many-to-one association. (It'sreally just an object reference.)

<many-t o- one

nanme="Pr oper t yNane" (1)
col um="col unm_nane" (2)
cl ass="d assNane" (3)
cascade="al | | none| save- updat e| del et e" (4)
fetch="j oi n| sel ect™" (5)
updat e="true| f al se" (6)
insert="true|fal se" (6)
property-ref="PropertyNaneFromAssoci at edd ass" (7)
access="fi el d| property| nosetter|d assNane" (8)
uni que="true| fal se" (9)

/>

(1) nare: The name of the property.

(2) col um (optiona): The name of the column.

(3) class (optional - defaults to the property type determined by reflection): The name of the associated
class.

(4) cascade (optiona): Specifies which operations should be cascaded from the parent object to the associ-
ated object.

(5) fetch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequentia select fetching.

(6) update, insert (optiona - defaults to true) specifies that the mapped columns should be included in

NHibernate 1.0.2 33

Basic O/R Mapping

(7

(8)

(9)

SQL uPDATE and/or | NSERT statements. Setting both to f al se alows a pure "derived" association whose
value is initialized from some other property that maps to the same colum(s) or by atrigger or other ap-
plication.

property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated classis used.

access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column.

The cascade attribute permits the following values: al | , save- updat e, del et e, none. Setting a value other than
none Will propagate certain operations to the associated (child) object. See "Lifecycle Objects" below.

Thef et ch attribute accepts two different values:

* joi n Fetch the association using an outer join
e sel ect Fetch the association using a separate query

A typical many-t o- one declaration looks as simple as

<many-t o- one nane="product" class="Product" col um="PRODUCT | D"/>

Theproperty-ref atribute should only be used for mapping legacy data where aforeign key refersto a unique
key of the associated table other than the primary key. Thisis an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The uni que attribute controls
NHibernate's DDL generation with the SchemaExport tool.)

<property nane="serial Nunber" uni que="true" type="string" col umm="SERI AL_NUMBER"/ >

Then the mapping for o der | t emmight use:

<many-t o- one nane="product" property-ref="serial Nunber" col um="PRODUCT_SERI AL_NUMBER"/ >

Thisis certainly not encouraged, however.

5.1.

11. one-to-one

A one-to-one association to another persistent classis declared using a one- t o- one element.

<one-t 0-one

/>

(1
(2)

(3)

(4

nanme="Pr opert yNane" (1)
cl ass="d assNane" (2)
cascade="al | | none| save- updat e| del et " (3)
constrai ned="true|fal se" (4)
fetch="j oi n| sel ect" (5)
property-ref="PropertyNaneFromAssoci at edC ass" (6)
access="fiel d| property| nosetter|C assNane" (7)

nane: The name of the property.

cl ass (optiona - defaults to the property type determined by reflection): The name of the associated
class.

cascade (optional) specifies which operations should be cascaded from the parent object to the associated
object.

constrai ned (optional) specifies that aforeign key constraint on the primary key of the mapped table ref-
erences the table of the associated class. This option affects the order in which save() and Del ete() are
cascaded (and is also used by the schema export tool).

NHibernate 1.0.2 34

Basic O/R Mapping

(5) fetch (optiona - defaultsto sel ect): Chooses between outer-join fetching or sequential select fetching.

(6) property-ref: (optional) The name of a property of the associated class that is joined to the primary key
of this class. If not specified, the primary key of the associated classis used.

(7) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

There are two varieties of one-to-one association:

e primary key associations
* unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For a primary key association, add the following mappings to Enpl oyee and Per son, respectively.

<one-t o0- one nanme="Person" class="Person"/>
<one-t o0- one nane="Enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOY EE tables are equal.
We use a special NHibernate identifier generation strategy called f or ei gn:

<cl ass nane="Person" tabl e="PERSON'>
<id name="1d" col um="PERSON | D'>
<generator class="foreign">
<par am nane="pr opert y" >Enpl oyee</ par an»
</ gener at or >
</id>

<one-t o- one name="Enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>
</ cl ass>

A newly saved instance of Per son is then assigned the same primar key value as the Enpl oyee instance refered
with the Enpl oyee property of that Per son.

Alternatively, aforeign key with a unique constraint, from Enpl oyee t0 Per son, may be expressed as:

<many-t o- one name="Person" class="Person" col um="PERSON | D' uni que="true"/>

And this association may be made bidirectional by adding the following to the Per son mapping:

<one-t o- one name="Enpl oyee" cl ass="Enpl oyee" property-ref="Person"/>

5.1.12. component, dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See " Components" below.

<conponent
name="Pr oper t yNanme" (1)
cl ass="d assNane" (2)
insert="true|fal se" (3)

NHibernate 1.0.2 35

Basic O/R Mapping

upate="true| fal se" (4)
access="fiel d| property| nosetter|d as(5) sNane" >

<property />
<many-to-one />

</ conponent >

(1) nane: The name of the property.

(2) class (optional - defaults to the property type determined by reflection): The name of the component
(child) class.

(3) insert: Do the mapped columns appear in SQL | NSERTS?

(4) updat e: Do the mapped columns appear in SQL UPDATES?

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynani c- conponent > element allows an | bi cti onary to be mapped as a component, where the property
names refer to keys of the dictionary.

5.1.13. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
(recommended) table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used.

<subcl ass
nanme="C assNane" (1)
di scri m nat or-val ue="di scri m nat or _val ue" (2)
proxy="Proxyl nterface" (3)
|l azy="true|fal se" (4)

dynami c- updat e="true| f al se"
dynami c-insert="true|fal se">

<property />

</ subcl ass>

(1) name: Thefully quaified .NET class name of the subclass, including its assembly name.

(2) discrimnator-val ue (optional - defaults to the class name): A value that distiguishes individual sub-
classes.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) lazy (optional): Setting | azy="true" is a shortcut equalivalent to specifying the name of the class itself
asthe pr oxy interface.

Each subclass should declare its own persistent properties and subclasses. <ver si on> and <i d> properties are
assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique di scri ni nat or -
val ue. If noneis specified, the fully qualified .NET class nhame is used.

5.1.14. joined-subclass

Alternatively, a subclass that is persisted to its own table (table-per-subclass mapping strategy) is declared us-
ing a<j oi ned- subcl ass> element.

NHibernate 1.0.2 36

Basic O/R Mapping

<j oi ned- subcl ass

nanme="C assNane" (1)
proxy="Proxyl nterface" (2)
lazy="true| fal se" (3)

dynami c- updat e="true| f al se"
dynam c-insert="true|fal se">

<key >

<property />

</ j oi ned- subcl ass>

(D
(2)
(3)

name: The fully qualified class name of the subclass.
proxy (optional): Specifies a class or interface to use for lazy initializing proxies.

I azy (optional): Setting | azy="true" is a shortcut equalivalent to specifying the name of the class itself
asthe pr oxy interface.

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as;

<?xm version="1.0"?>

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0" assenbl y="Eg"
namespace="Eg" >

<cl ass name="Cat" tabl e="CATS">

<id name="1d" col um="uid" type="Int64">

<generator class="hilo"/>

</id>

<property nane="BirthDate" type="Date"/>
<property name="Col or" not-null="true"/>
<property nane="Sex" not-null="true"/>

<property nanme="\Wight"/>
<many-t o- one nane="Mate"/>
<set name="Kittens">
<key col um="MOTHER"/ >
<one-to-many class="Cat"/>
</set>

<j oi ned- subcl ass nanme="Donesti cCat" tabl e="DOVESTI C_CATS" >

<key col um="CAT"/ >

<property nanme="Nane" type="String"/>

</ j oi ned- subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<!'-- mapping for Dog could go here -->
</cl ass>

</ hi ber nat e- mappi ng>

5.1.15. map, set, list, bag

Collections are discussed | ater.

5.1.16. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified name in NHibernate queries. Classes may be "imported” explicitly, rather than relying upon aut o-

i mport="true".Youmay even import classes and interfaces that are not explicitly mapped.

<i nport class="System Cbject" renanme="Universe"/>

NHibernate 1.0.2

37

Basic O/R Mapping

<i nport
cl ass="0C assNane" (1)
r enanme=" Shor t Nanme" (2)
/>

(1) class: Thefully qualified class name of any .NET class, including its assembly name.
(2) renanme (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.
5.2. NHibernate Types

5.2.1. Entities and values

To understand the behaviour of various .NET language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
Java model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). Thisis different from the
ODMG model of object persistence by reachability - and corresponds more closely to how application objects
areusually used in large systems. Entities support circular and shared references. They may also be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are prim-
itives, collections, components and certain immutable objects. Unlike entities, values (in particular collections
and components) are persisted and deleted by reachability. Since value objects (and primitives) are persisted
and deleted along with their containing entity they may not be independently versioned. Values have no inde-
pendent identity, so they cannot be shared by two entities or collections.

All NHibernate types except collections support null semantics if the .NET type is nullable (i.e. not derived
from syst em Val ueType).

Up until now, we've been using the term "persistent class' to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics.

5.2.2. Basic value types

The basic types may be roughly categorized into three groups - Syst em Val ueType types, System Obj ect
types, and Syst em oj ect types for large objects. Just like the .NET Types, columns for System.ValueType
types can not store nul | values and System.Object types can store nul | values.

Table5.3. System.ValueType Mapping Types

NHibernate Type .NET Type Database Type Remarks

Ansi Char Syst em Char Db-
Type. Ansi St ri ngFi xedL
ength - 1 char

Bool ean Syst em Bool ean DbType. Bool ean Default when no t ype at-
tribute specified.

NHibernate 1.0.2 38

Basic O/R Mapping

NHibernate Type .NET Type Database Type Remarks
Byt e System Byt e DbType. Byt e Default when no t ype at-
tribute specified.
Char Syst em Char Db- Default when no t ype at-
Type. StringFi xedLengt tribute specified.
h - 1 char
Dat eTi nme Syst em Dat eTi ne DbType. DateTime - ig- Default when no type at-
nores the milliseconds tribute specified.
Deci nal Syst em Deci nal DbType. Deci mal Default when no type at-
tribute specified.
Doubl e Syst em Doubl e DbType. Doubl e Default when no t ype at-
tribute specified.
Qui d System Gui d DbType. Gui d Default when no t ype at-
tribute specified.
Int16 System Int 16 DbType. | nt 16 Default when no t ype at-
tribute specified.
I nt 32 System | nt 32 DbType. | nt 32 Default when no t ype at-
tribute specified.
| nt 64 System I nt 64 DbType. | nt 64 Default when no t ype at-

Per si st ent Enum

A Syst em Enum

The DbType for the under-
lying value.

tribute specified.

Do not specify
t ype="Per si st ent Enunf
in the mapping. Instead
specify the Assembly
Qualified Name of the
Enum or let NHibernate
use Reflection to "guess'
the Type. The Underly-
ingType of the Enum is
used to determine the cor-
rect DoType.

Single System Singl e DbType. Singl e Default when no type at-
tribute specified.
Ti cks Syst em Dat eTi ne DbType. | nt 64 type="Ticks" must be
specified.
Ti meSpan Syst em Ti neSpan DbType. | nt 64 Default when no t ype at-
tribute specified.
Ti mest anmp Syst em Dat eTi ne DoType. DateTime - as type="Ti mestanmp"” mMust
specific as database sup- be specified.
ports.
TrueFal se Syst em Bool ean Db- type="TrueFal se" must

Type. Ansi Stri ngFi xedL
ength - 1 char either T
or'F

be specified.

NHibernate 1.0.2

39

Basic O/R Mapping

NHibernate Type .NET Type Database Type Remarks
YesNo Syst em Bool ean Db- type="YesNo" must be
Type. Ansi Stri ngFi xedL specified.
ength - 1 char either "Y'
or'N'
Table 5.4. System.Object Mapping Types
NHibernate Type .NET Type Database Type Remarks

Ansi String System String DbType. Ansi String type="Ansi String" must

be specified.

Cul turel nfo Sys- DbType. String - 5 chars Default when no type at-
tem G obal i zation. cul for culture tribute specified.
turelnfo

Bi nary System Byt e[] DbType. Bi nary Default when no type at-

tribute specified.

Type Syst em Type DbType. String holding Default when no type at-

Assembly Qualified tribute specified.
Name.
String System String DbType. String Default when no t ype at-

Table 5.5. Large Object Mapping Types

NHibernate Type

StringC ob

Bi nar yBl ob

Serializable

.NET Type

System String

System Byt e[]

Database Type

DbType. String

DbType. Bi nary

Any System bj ect that | DoType. Binary

is marked with Seridiz-
ableAttribute.

tribute specified.

Remarks

type="Stringd ob" must
be specified. Entire field
isread into memory.

t ype="Bi nar yBl ob" must
be specified. Entire field
isread into memory.

type="Serializabl e"
should be specified. This
is the fallback type if no
NHibernate Type can be
found for the Property.

NHibernate supports some additional type names for compatibility with Hibernate (useful for those coming
over from Hibernate or using some of the tools to generate hbom xm files). A type="i nteger" Or type="int"
will map to an I nt 32 NHibernate type, t ype="short" to an I nt 16 NHibernateType. To see al of the conver-
sions you can view the source of static constructor of the class NHi ber nat e. Type. TypeFact ory.

5.2.3. Custom value types

NHibernate 1.0.2

40

Basic O/R Mapping

Itisrelatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of type I nt 64 to VARCHAR columns. NHibernate does not provide a built-in type for this. But custom types
are not limited to mapping a property (or collection element) to a single table column. So, for example, you
might have a property Name { get; set; } of type String that is persisted to the columns FI RST_NAME, | NI -
TI AL, SURNANE.

To implement a custom type, implement either NHi ber nat e. | User Type OF NHi ber nat e. | Corrposi t eUser Type
and declare properties using the fully quaified name of the type. Check out NHibern-
at e. Dormai nMWbdel . Doubl eSt ri ngType to see the kind of things that are possible.

<property nane="TwoStrings" type="NHi bernate. Domai nMbdel . Doubl eStri ngType, NHi ber nat e. Dormai nMbdel ">
<col um nane="first_string"/>
<col um nane="second_string"/>

</ property>

Notice the use of <col um> tags to map a property to multiple columns.

Even though NHibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a Monet ar yAmount class is a good candidate for an
| Conposi t eUser Type, even though it could easily be mapped as a component. One motivation for this is ab-
straction. With a custom type, your mapping documents would be future-proofed against possible changes in
your way of representing monetary values.

5.2.4. Any type mappings

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping aways requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It is impossible to specify a
foreign key constraint for this kind of association, so thisis most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very specia cases (eg. audit logs, user session
data, etc).

<any name="AnyEntity" id-type="Int64" nmeta-type="Eg. Custom C ass2Tabl enaneType" >
<col um nane="t abl e_nane"/ >
<col um nane="id"/>

</ any>

The net a- t ype attribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by i d- t ype. If the meta-type returns instances
of system Type, nothing else is required. On the other hand, if it is abasic type like St ri ng or Char, you must
specify the mapping from values to classes.

<any name="AnyEntity" id-type="Int64" meta-type="String">
<net a- val ue val ue="TBL_AN MAL" cl ass="Ani nal "/ >
<net a- val ue val ue="TBL_HUMAN' cl ass="Human"/>
<net a-val ue val ue="TBL_ALI EN' cl ass="Alien"/>
<col um nane="t abl e_nane"/>
<col um nane="id"/>

</ any>

<any
nanme="Pr opert yNane" (1)
i d-type="idtypenane" (2)
net a- t ype="net at ypenane" (3)
cascade="none| al | | save- updat e" (4)

access="fiel d| property| nosetter| d assNane(5)"

NHibernate 1.0.2 41

Basic O/R Mapping

<neta-value ... />
<neta-value ... />

<colum />
<colum />

</ any>

(1) nane: the property name.

(2) id-type:theidentifier type.

(3) neta-type (optiona - defaults to Type): atype that maps Syst em Type to a single database column or, al-
ternatively, atype that is allowed for a discriminator mapping.

(4) cascade (optional - defaultsto none): the cascade style.

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

5.3. SQL quoted identifiers

Y ou may force NHibernate to quote an identifier in the generated SQL by enclosing the table or column name
in backticks in the mapping document. NHibernate will use the correct quotation style for the SQL Di al ect
(usually double quotes, but brackets for SQL Server and backticks for MySQL).

<cl ass nanme="Linelten table=""Line Item">

<id name="1d" colum=""Item|d "/><generator class="assigned"/></id>
<property nanme="ItemNunber" colum=""Item# "/>
</ cl ass>

5.4. Modular mapping files

It is possible to define subcl ass and j oi ned- subcl ass mappings in seperate mapping documents, directly be-
neath hi ber nat e- mappi ng. This allows you to extend a class hierachy just by adding a new mapping file. You
must specify an ext ends attribute in the subclass mapping, naming a previously mapped superclass. Use of this
feature makes the ordering of the mapping documents important!

<hi ber nat e- mappi ng>
<subcl ass nane="Eg. Subcl ass. Donesti cCat, Eg"
ext ends="Eg. Cat, Eg" discrimn nator-val ue="D"'>
<property nane="nane" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

NHibernate 1.0.2 42

Chapter 6. Collection Mapping

6.1. Persistent Collections

This section does not contain much example C# code. We assume you aready know how to use .NET collec-
tions framework. If so, there's not really anything more to know - with a single caveat, you may use .NET col-
lections the same way you always have.

NHibernate can persist instances of System Col |l ections.|IDictionary, lesi.Collections.|Set, Sys-
tem Collections.IList, and any array of persistent entities or vaues. Properties of type Sys-
tem Col | ections. | Col | ection Or System Col | ections. | Li st may also be persisted with "bag" semantics.

Now the caveat: persistent collections do not retain any extra semantics added by the class implementing the
collection interface (eg. iteration order of a Li st Di ctionary). The persistent collections actually behave like
Hasht abl e, HashedSet and ArrayLi st respectively (with the exception of Sort edLi st and Sort edSet which do
retain the sort order). Furthermore, the type of a property holding a collection must be the interface type (ie.
I Dictionary, | Set OF | Li st; Never Hasht abl e, Sort edSet Of ArrayLi st). Thisrestriction exists because, when
you're not looking, NHibernate sneakily replaces your instances of 1 Dictionary, | Set and I List with in-
stances of its own persistent implementations of 1 Di cti onary, | Set or I Li st. (So aso be careful when using
== on your collections.)

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

| Set kittens = new HashedSet ();

kittens. Add(kitten);

cat.Kittens = kittens;

sessi on. Save(cat);

kittens = cat.Kittens; //Okay, kittens collection is a Set
HashedSet hs = (HashedSet) cat.Kittens; //Error!

Coallections obey the usual rules for value types. no shared references, created and deleted along with contain-
ing entity. Due to the underlying relational model, they do not support null value semantics; NHibernate does
not distinguish between a null collection reference and an empty collection.

Collections are automatically persisted when referenced by a persistent object and automatically deleted when
unreferenced. If a collection is passed from one persistent object to ancther, its elements might be moved from
one table to another. Y ou shouldn't have to worry much about any of this. Just use NHibernate's collections the
same way you use ordinary .NET collections, but make sure you understand the semantics of bidirectional asso-
ciations (discussed later) before using them.

Collection instances are distinguished in the database by aforeign key to the owning entity. Thisforeign key is
referred to as the collection key . The collection key is mapped by the <key> element.

Collections may contain almost any other NHibernate type, including all basic types, custom types, entity types
and components. This is an important definition: An object in a collection can either be handled with "pass by
value" semantics (it therefore fully depends on the collection owner) or it can be a reference to another entity
with an own lifecycle. Collections may not contain other collections. The contained type is referred to as the
collection element type. Collection elements are mapped by <elenent>, <conposite-elenment>,
<one-t 0- mANy>, <mANy- t 0- mAny> Of <many-t o- any>. The first two map elements with value semantics, the oth-
er three are used to map entity associations.

All collection types except | Set and bag have an index column - a column that mapsto an array or | Li st index

NHibernate 1.0.2 43

Collection Mapping

or I Di ctionary key. Theindex of an 1 bi cti onary may be of any basic type, an entity type or even a composite
type (it may not be a collection). The index of an array or list is always of type I nt 32. Indexes are mapped us-
ing <i ndex>, <i ndex- many- t o- many>, <conposi t e- i ndex> Of <i ndex- many-t o- any>.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations transl ate to database tables.

6.2. Mapping a Collection

Collections are declared by the <set>, <list>, <map>, <bag>, <array> and <prinitive-array> elements.
<map> IS representative:

<n’ap
nanme="pr oper t yNane" (1)
tabl e="t abl e_nane" (2)
schema="schenma_nane" (3)
| azy="true|fal se" (4)
i nverse="true| fal se" (5)
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan" (6)
sort="unsort ed| nat ural | conpar at or d ass" (7)
or der - by="col utmm_nane asc| desc" (8)
where="arbitrary sql where condition" (9)
fetch="sel ect|j oi n" (10)
bat ch-si ze="N" (11)
access="fiel d| property| Cl assNane" (12)

>
<key />
<index />
<elenent />

</ map>

(1) nane the collection property name

(2) table (optiona - defaults to property name) the name of the collection table (not used for one-to-many
associ ations)

(3) schena (optional) the name of atable schemato override the schema declared on the root element

(4) lazy (optiona - defaultsto f al se) enable lazy initialization (not used for arrays)

(5) inverse (optional - defaultsto f al se) mark this collection as the "inverse" end of a bidirectional associ-
ation

(6) cascade (optional - defaults to none) enable operations to cascade to child entities

(7) sort (optional) specify a sorted collection with nat ur al sort order, or a given comparator class

(8) order-by (optional) specify atable column (or columns) that define the iteration order of the I Di cti on-
ary, | Set or bag, together with an optional asc or desc

(9) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the
collection (useful if the collection should contain only a subset of the available data)

(10) fetch (optional) Choose between outer-join fetching and fetching by sequential select.

(11) bat ch-si ze (optional, defaults to 1) specify a"batch size" for lazily fetching instances of this collection.

(12) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

The mapping of an I Li st or array requires a seperate table column holding the array or list index (thei in
foo[i]). If your relational model doesn't have an index column, e.g. if you're working with legacy data, use an
unordered | set instead. This seems to put people off who assume that | Li st should just be a more convenient
way of accessing an unordered collection. NHibernate collections strictly obey the actual semantics attached to
thel set, IList and I Dictionary interfaces. I Li st elements don't just spontaneously rearrange themselves!

NHibernate 1.0.2 44

Collection Mapping

On the other hand, people who planned to use the I Li st to emulate bag semantics have a legitimate grievance
here. A bag is an unordered, unindexed collection which may contain the same element multiple times. The
NET collections framework lacks an | Bag interface, hence you have to emulate it with an 1 Li st . NHibernate
lets you map properties of type 1 Li st or | Col | ecti on With the <bag> element. Note that bag semantics are not
really part of the 1 col I ection contract and they actually conflict with the semantics of the I Li st contract
(however, you can sort the bag arbitrarily, discussed later in this chapter).

Note: Large NHibernate bags mapped with i nver se="f al se" are inefficient and should be avoided; NHibern-
ate can't create, delete or update rows individually, because there is no key that may be used to identify an indi-
vidual row.

6.3. Collections of Values and Many-To-Many Associations

A collection table is required for any collection of values and any collection of references to other entities
mapped as a many-to-many association (the natural semantics for a .NET collection). The table requires
(foreign) key column(s), element column(s) and possibly index column(s).

The foreign key from the collection table to the table of the owning classis declared using a <key> element.

<key col um="col um_nane"/ >

(1) col um (required): The name of the foreign key column.

For indexed collections like maps and lists, we require an <i ndex> element. For lists, this column contains se-
quential integers numbered from zero. Make sure that your index really starts from zero if you have to deal with
legacy data. For maps, the column may contain any values of any NHibernate type.

<i ndex
col um="col um_nane" (1)
type="t ypenane" (2)
/>

(1) col um (required): The name of the column holding the collection index values.
(2) type (optional, defaultsto I nt 32): The type of the collection index.

Alternatively, amap may be indexed by objects of entity type. We use the <i ndex- many- t o- many> element.

<i ndex- many-t o- many
col um="col um_nane" (1)
cl ass="d assNane" (2)
/>

(1) col umn (required): The name of the foreign key column for the collection index values.
(2) class (required): The entity class used as the collection index.

For acollection of values, we use the <el enent > tag.

<el enent
col um="col um_nane" (1)
type="t ypenane" (2)
/>

(1) col um (required): The name of the column holding the collection element values.
(2) type (required): The type of the collection element.

NHibernate 1.0.2 45

Collection Mapping

A collection of entities with its own table corresponds to the relational notion of many-to-many association. A
many to many association is the most natural mapping of a.NET collection but is not usually the best relational
model.

<many-t o- many

col um="col unm_nane" (1)
cl ass="dC assNane" (2)
fetch="j oi n| sel ect" (3)

/>

(1) col um (required): The name of the element foreign key column.

(2) class (required): The name of the associated class.

(3) fetch (optional, defaults to j oi n): enables outer-join or sequential select fetching for this association.
Thisisaspecial case; for full eager fetching (in asingle SELECT) of an entity and its many-to-many rela-
tionships to other entities, you would enable join fetching not only of the collection itself, but also with
this attribute on the <many- t o- many> nested element.

Some examples, first, a set of strings:

<set nanme="Nanes" tabl e=" NAMES" >

<key col umm="GROUPI D'/ >

<el ement col um="NAME" type="String"/>
</set>

A bag containing integers (with an iteration order determined by the or der - by attribute):

<bag nanme="Si zes" tabl e="S| ZES" order-by="S| ZE ASC'>
<key col um="0OMER'/ >
<el enent col um="SI ZE' type="Int32"/>

</ bag>

An array of entities - in this case, a many to many association (note that the entities are lifecycle objects, cas-
cade="al | "):

<array name="Foos" tabl e="BAR FOOS" cascade="all">
<key col um="BAR | D'/ >

<i ndex col um="1"/>
<many-t o- many col um="FOO | D' cl ass="Eg. Foo, Eg"/>
</ array>

A map from string indices to dates:

<map name="Hol i days" tabl e="holidays" schema="dbo" order-by="hol nane asc">
<key col um="id"/>
<i ndex col um="hol _nanme" type="String"/>
<el enent col um="hol _date" type="Date"/>

</ map>

A list of components (discussed in the next chapter):

<l i st nane="Car Conponent s" tabl e="car_conponents">
<key col um="car _i d"/>
<i ndex col um="posn"/>
<conposi te-el emrent cl ass="Eg. Car. Car Conponent " >
<property nane="Price" type="float"/>
<property nane="Type" type="Eg. Car. Conponent Type, Eg"/>
<property nanme="Seri al Nunber" col um="serial _no" type="String"/>
</ conposi te-el enent >
</list>

NHibernate 1.0.2 46

Collection Mapping

6.4. One-To-Many Associations

A one to many association links the tables of two classes directly, with no intervening collection table. (This
implements a one-to-many relational model.) This relational model loses some of the semantics of .NET collec-
tions:

* No null values may be contained in adictionary, set or list
* Aninstance of the contained entity class may not belong to more than one instance of the collection
e Aninstance of the contained entity class may not appear at more than one value of the collection index

An association from Foo to Bar reguires the addition of akey column and possibly an index column to the table
of the contained entity class, Bar . These columns are mapped using the <key> and <i ndex> elements described
above.

The <one-t o- many> tag indicates a one to many association.

<one-to-many cl ass="Cl assNanme"/>

(1) class (required): The name of the associated class.
Example:

<set nane="Bars">
<key colum="foo_id"/>
<one-to-many cl ass="Eg. Bar, Eg"/>
</set>

Notice that the <one-t o- many> element does not need to declare any columns. Nor isit necessary to specify the
t abl e name anywhere.

Very Important Note: If the <key> column of a <one-t o- many> association is declared NOT NULL, NHibernate
may cause constraint violations when it creates or updates the association. To prevent this problem, you must
use a bidirectional association with the many valued end (the set or bag) marked asi nverse="true". See the
discussion of bidirectional associations later in this chapter.

6.5. Lazy Initialization

Coallections (other than arrays) may be lazily initialized, meaning they load their state from the database only
when the application needs to access it. Initialization happens transparently to the user so the application would
not normally need to worry about this (in fact, transparent lazy initialization is the main reason why NHibernate
needs its own collection implementations). However, if the application tries something like this:

s = sessions. OpenSessi on();

| Transaction tx = sessions. Begi nTransaction();

User u = (User) s.Find("fromUser u where u. Name=?", userName, NHi bernateUtil.String)[O0];
I Dictionary perm ssions = u.Perm ssions;

tx. Commit();

s. Cl ose();

int accessLevel = (int) perm ssions["accounts"]; // Error!
It could be in for a nasty surprise. Since the permissions collection was not initialized when the | Sessi on was

committed, the collection will never be able to load its state. The fix is to move the line that reads from the col-
lection to just before the commit. (There are other more advanced ways to solve this problem, however.)

NHibernate 1.0.2 47

Collection Mapping

Alternatively, use a non-lazy collection. Since lazy initialization can lead to bugs like that above, non-laziness
is the default. However, it is intended that lazy initiaization be used for aimost all collections, especialy for
collections of entities (for reasons of efficiency).

Exceptions that occur while lazily initializing a collection are wrapped in aLazyl ni ti al i zat i onExcept i on.
Declare alazy collection using the optional | azy attribute;

<set nanme="Nanmes" tabl e="NAMES" | azy="true">
<key col um="group_id"/>
<el enent col umm="NAME" type="String"/>
</ set>

In some application architectures, particularly where the code that accesses data using NHibernate, and the
code that uses it are in different application layers, it can be a problem to ensure that the | Sessi on is open when
acollectionisinitialized. There are two basic ways to deal with thisissue:

* In aweb-based application, an event handler can be used to close the | Sessi on only at the very end of a
user request, once the rendering of the view is complete. Of course, this places heavy demands upon the
correctness of the exception handling of your application infrastructure. It is vitally important that the | Ses-
si on is closed and the transaction ended before returning to the user, even when an exception occurs during
rendering of the view. The event handler has to be able to access the | Sessi on for this approach. We re-
commend that the current | Sessi on is stored in the Htt pContext . I t ems collection (see chapter 1, Sec-
tion 1.4, “Playing with cats’, for an example implementation).

* Inan application with a seperate business tier, the business logic must "prepare” all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
al the data already initialized to the presentation/web tier that is required for a particular use case. Usualy,
the application calls NHi bernateUti | . I nitialize() for each collection that will be needed in the web tier
(this call must occur before the session is closed) or retrieves the collection eagerly using a NHibernate
query with a FETCH clause.

e You may aso attach a previously loaded object to anew | Sessi on with Updat e() or Lock() before access-
ing unitialized collections (or other proxies). NHibernate can not do this automatically, as it would intro-
duce ad hoc transaction semantics!

You can usetheFil ter () method of the NHibernate | Session API to get the size of a collection without initial-
izing it:

I Collection countColl = s.Filter(collection, "select count(*)");

| Enunerat or count En = count Col | . Get Enunerator () ;

count En. MoveNext () ;
int count = (int) countEn.Current;

Filter() Or CreateFilter() areaso used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection.

6.6. Sorted Collections

NHibernate supports collections implemented by System Col I ecti ons. Sort edLi st and
lesi. Col | ections. SortedSet. You must specify acomparer in the mapping file:

<set nanme="Aliases" tabl e="person_aliases" sort="natural ">
<key col umm="person"/>

NHibernate 1.0.2 48

Collection Mapping

<el enent col um="nane" type="String"/>
</set>

<map nanme="Hol i days" sort="M. Cust om Hol i dayConparer, MAssenbly" |azy="true">
<key columm="year id"/>
<i ndex col um="hol _nanme" type="String"/>
<el ement col um="hol _date" type="Date"/>

</ map>

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing Sys-
tem Col | ections. | Conparer.

If you want the database itself to order the collection elements use the or der - by attribute of set, bag or map
mappings. This performs the ordering in the SQL query, not in memory.

Setting the or der - by attribute tells NHibernate to use Li st Di cti onary Or Li st Set classinternally for diction-
aries and sets, maintaining the order of the elements. Note that lookup operations on these collections are very
slow if they contain more than a few elements.

<set name="Aliases" tabl e="person_aliases" order-by="nane asc">
<key col um="person"/>
<el enent col um="nane" type="String"/>

</ set>

<map nanme="Hol i days" order-by="hol _date, hol_nane" |azy="true">
<key colum="year _id"/>
<i ndex col um="hol _nanme" type="String"/>
<el ement col um="hol _date type="Date"/>

</ map>

Note that the value of the or der - by attribute is an SQL ordering, not aHQL ordering!
Associations may even be sorted by some arbitrary criteriaat runtime using aFilter().

sortedUsers = s.Filter(group.Users, "order by this.Nane");

6.7. Using an <i dbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections
of values that we've shown so far all map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, NHibernate provides a feature that allows you to map many to many associations and
collections of values to atable with a surrogate key.

The <i dbag> element lets you map aLi st (or Col | ecti on) with bag semantics.

<i dbag name="Lovers" tabl e="LOVERS" |azy="true">
<col |l ection-id colum="1D" type="Int64">
<generator class="hilo"/>
</coll ection-id>
<key col um="PERSONL"/ >
<many-to- many col um="PERSON2" cl ass="Eg. Person" fetch="join"/>
</ i dbag>

As you can see, an <i dbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. NHibernate does not provide any mechanism to discover the surrogate key
value of a particular row, however.

NHibernate 1.0.2 49

Collection Mapping

Note that the update performance of an <i dbag> is much better than a regular <bag>! NHibernate can locate in-
dividua rows efficiently and update or delete them individually, just like alist, map or set.

In the current implementation, the nat i ve identifier generation strategy is not supported for <i dbag> collection
identifiers.

6.8. Bidirectional Associations

A bidirectional association alows navigation from both "ends" of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

Please note that NHibernate does not support bidirectional one-to-many associations with an indexed collection
(list, map or array) as the "many" end, you have to use a set or bag mapping.

Y ou may specify a bidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice). Here's an example of a
bidirectional many-to-many association from a class back to itself (each category can have many items and
each item can be in many categories):

<cl ass nanme="NHi ber nat e. Aucti on. Cat egory, NHi bernate. Auction">
<id name="1d" colum="I1D"/>

<bag nane="Itens" tabl e="CATEGORY_ | TEM' |azy="true">
<key col um="CATEGORY_I D'/ >
<many-t o- many cl ass="NH bernate. Aucti on.ltem NH bernate. Auction" colum="1TEM I|ID"'/>
</ bag>
</cl ass>

<cl ass nane="NH bernate. Auction.ltem NH bernate. Aucti on">
<id nanme="id" colum="ID"/>

<I-- inverse end -->
<bag name="cat egories" tabl e="CATEGORY_| TEM' inverse="true" |azy="true">
<key colum="ITEM ID"'/ >
<many-t o- many cl ass="NHi bernat e. Aucti on. Cat egory, NHi bernate. Auction" col um="CATEGORY_| D'/ >
</ bag>
</ cl ass>

Changes made only to the inverse end of the association are not persisted. This means that NHibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. Thisiseasier to understand if you think about the .NET object model and how we create a many-to-many re-
lationship in C#:

category.ltens. Add(iten); /'l The category now "knows" about the rel ationship
i tem Cat egori es. Add(cat egory); /1 The item now "knows" about the rel ationship
sessi on. Update(item; /1l No effect, nothing will be saved!

sessi on. Updat e(cat egory); /1l The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database. We would get an unnec-

NHibernate 1.0.2 50

Collection Mapping

cessary INSERT/UPDATE and probably even aforeign key violation if both would trigger changes! The same
is of course also true for bidirectional one-to-many associations.

Y ou may map a bidirectional one-to-many association by mapping a one-to-many association to the same table
column(s) as a many-to-one association and declaring the many-valued end i nver se="true".

<cl ass name="Eg. Parent, Eg">
<id name="1d" colum="id"/>

<set nanme="Children" inverse="true" |azy="true">
<key col um="parent _id"/>
<one-to-nmany class="Eg. Child, Eg"/>
</set>
</ cl ass>

<cl ass nanme="Eg. Child, Eg">
<id name="1d" colum="id"/>

<many-t o-one nane="Parent" class="Eg.Parent, Eg" colum="parent_id"/>
</ cl ass>

Mapping one end of an association with i nver se="true" doesn't affect the operation of cascades, both are dif-
ferent concepts!

6.9. Ternary Associations

There are two possible approaches to mapping a ternary association. One approach is to use composite ele-
ments (discussed below). Another isto use an | Di cti onary with an association asits index:

<map nanme="Contracts" |azy="true">
<key col um="enpl oyer_id"/>
<i ndex- many-t o- many col utm="enpl oyee_i d" cl ass="Enpl oyee"/ >
<one-to-many col um="contract_id" class="Contract"/>

</ map>

<map nane="Connections" |azy="true">
<key col um="nodel_id"/>
<i ndex- many-t o- many col um="node2_i d" cl ass="Node"/ >
<many-t o- many col um="connection_id" cl ass="Connection"/>
</ map>

6.10. Heterogeneous Associations

The <many-t o- any> and <i ndex- many- t o- any> elements provide for true heterogeneous associations. These
mapping elements work in the same way as the <any> element - and should also be used rarely, if ever.

6.11. Collection examples

The previous sections are pretty confusing. So letslook at an example. This class:

usi ng System
usi ng System Col | ecti ons;

namespace Eg

public class Parent

{

NHibernate 1.0.2 51

Collection Mapping

private |ong id;
private |Set children

public long Id

{
get { return id; }
set { id = value; }
}
private | Set Children
{
get { return children; }
set { children = value; }
}

has a collection of Eg. chi | d instances. If each child has at most one parent, the most natural mapping is a one-

to-many association:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
assenbl y="Eg" namespace="Eg" >

<cl ass nanme="Parent">
<id name="1d">
<gener ator cl ass="sequence"/>
</id>
<set nanme="Children" |azy="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</ set>
</ cl ass>

<cl ass nane="Chil d">
<id name="1d">
<generator cl ass="sequence"/>
</id>
<property nanme="Nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

create table parent (Id bigint not null primry key)
create table child (Id bigint not null primry key, Name varchar (255),
alter table child add constraint childfkO (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
assenbl y="Eg" namespace="Eg">

<cl ass nanme="Parent">
<id name="|d">
<gener ator class="sequence"/>
</id>
<set nanme="Children" inverse="true" |azy="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>
</cl ass>

<cl ass nanme="Chil d">

parent _id bigint)

NHibernate 1.0.2

52

Collection Mapping

<id nanme="I1d">
<gener ator cl ass="sequence"/>

</id>

<property name="Nanme"/>

<many-t o-one nane="parent" class="Parent" colum="parent_id" not-null="true"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Notice the NOT NULL constraint:

create table parent (Id bigint not null primary key)
create table child (Id bigint not nul
primary key,
Nanme var char (255),
parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
assenbl y="Eg" namespace="Eg">

<cl ass name="Parent">
<id name="1d">
<gener ator class="sequence"/>
</id>
<set nanme="Children" |lazy="true" table="childset">
<key col um="parent _id"/>
<many-to- many cl ass="Child" colum="child_id"/>
</set>
</cl ass>

<cl ass nanme="eg. Chi | d">
<id name="1d">
<gener ator class="sequence"/>
</id>
<property name="Nanme"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Table definitions;

create table parent (Id bigint not null primry key)
create table child (Id bigint not null primry key, name varchar(255))
create table childset (parent_id bigint not null

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent _id) references parent
alter table childset add constraint childsetfkl (child_id) references child

NHibernate 1.0.2

53

Chapter 7. Component Mapping

The notion of a component is re-used in several different contexts, for different purposes, throughout NHibern-
ate.

7.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity. The term "component” refers
to the object-oriented notion of composition (not to architecture-level components). For example, you might
model a person like this:

public class Person

{
private DateTine birthday;
private Name nane;
private string key;
public string Key
{
get { return key; }
set { key = value; }
}
publ i c DateTi ne Birthday
{
get { return birthday; }
set { birthday = value; }
}
publ i c Nane Nane
{
get { return nane; }
set { nanme = val ue; }
}
}
public class Nanme
{
char initial;
string first;
string |last;
public string First
{
get { return first; }
set { first = value; }
}
public string Last
{
get { return last; }
set { last = value; }
}
public char Initial
{
get { return initial; }
set { initial = value; }
}
}

NHibernate 1.0.2 54

Component Mapping

Now Nare may be persisted as a component of Per son. Notice that Nane defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Our NHibernate mapping would look like:

<cl ass nanme="Eg. Person, Eg" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid. hex"/>

</id>
<property nane="Birthday" type="date"/>
<conmponent name="Nane" class="Eg. Name, Eg"> <!-- class attribute optional -->

<property nane="lnitial"/>
<property nane="First"/>
<property nanme="Last"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, Bi rt hday, I ni ti al , Fi rst and Last .

Like al value types, components do not support shared references. The null value semantics of a component
are ad hoc. When reloading the containing object, NHibernate will assume that if all component columns are
null, then the entire component is null. This should be okay for most purposes.

The properties of a component may be of any NHibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. NHibernate is intended to sup-
port avery fine-grained object model.

The <conponent > element allows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

<cl ass nane="Eg. Person, Eg" table="person">
<id name="Key" colum="pid" type="string">
<generator class="uuid. hex"/>
</id>
<property nane="Birthday" type="date"/>
<conponent name="Nane" cl ass="Eg. Name, Eg">
<par ent nanme="NanedPerson"/> <!-- reference back to the Person -->
<property nane="Initial"/>
<property nane="First"/>
<property name="Last"/>
</ conponent >
</ cl ass>

7.2. Collections of dependent objects

Coallections of components are supported (eg. an array of type Nane). Declare your component collection by re-
placing the <el ement > tag with a<conposi t e- el enent > tag.

<set nane="SoneNanes" tabl e="sone_nanes" |azy="true">
<key col um="id"/>
<conposite-el enent class="Eg. Name, Eg"> <!-- class attribute required -->
<property nane="Initial"/>
<property nane="First"/>
<property nane="Last"/>
</ conposi t e- el enent >
</ set>

Note: if you define an | Set of composite elements, it is very important to implement Equal s() and Get Hash-
Code() correctly.

NHibernate 1.0.2 55

Component Mapping

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nest ed- conposi t e- el ement > tag. Thisis a pretty exotic case - a collection of compon-
ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
object model is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set >.
NHibernate has to use each columns value to identify a record when deleting objects (there is no separate
primary key column in the composite element table), which is not possible with null values. Y ou have to either
use only not-null properties in acomposite-element or choose a<l i st >, <map>, <bag> Or <i dbag>.

A special case of a composite element is a composite element with a nested <many- t o- one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from order to |tem where pPurchaseDate, Price and
Quant ity are properties of the association:

<cl ass nane="Order" >

<set name="Purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="Purchase">
<property name="PurchaseDate"/>
<property nane="Price"/>
<property name="Quantity"/>
<many-to-one name="Iltent class="Itenl'/> <!-- class attribute is optional -->
</ conposi t e- el enent >
</set>
</ cl ass>

Even ternary (or quaternary, etc) associations are possible:

<cl ass nanme="Order" >

<set name="Purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el emrent cl ass="Or derLi ne">
<many-t o- one name="Pur chaseDet ai |l s cl ass="Purchase"/>
<many-to-one nane="Itent' class="Iten'/>
</ conposi t e- el emrent >
</set>
</ cl ass>

Composite elements may appear in queries using the same syntax as associations to other entities.

7.3. Components as IDictionary indices

The <conposi t e- i ndex> element lets you map a component class asthe key of an 1 Di cti onary. Make sure you
override Get HashCode() and Equal s() correctly on the component class.

7.4. Components as composite identifiers

Y ou may use a component as an identifier of an entity class. Y our component class must satisfy certain require-
ments:

e |tmustbeSerializable.
e It must re-implement Equal s() and Get HashCode(), consistently with the database's notion of composite

NHibernate 1.0.2 56

Component Mapping

key equality.

You can't use an | 1 denti fier Generator t0o generate composite keys. Instead the application must assign its
own identifiers.

Since a composite identifier must be assigned to the object before saving it, we can't use unsaved- val ue of the
identifier to distinguish between newly instantiated instances and instances saved in a previous session.

Y ou may instead implement I | nt er cept or . | sUnsaved() if you wish to use SaveOr Updat e() or cascading save
/ update. As an alternative, you may also set the unsaved- val ue attribute on a<ver si on> (0Or <t i mest anp>) €le-
ment to specify a value that indicates a new transient instance. In this case, the version of the entity is used in-
stead of the (assigned) identifier and you don't have to implement | I nt er cept or . | sUnsaved() yourself.

Use the <conposi t e- i d> tag (same attributes and elements as <conponent >) in place of <i d> for the declaration
of acomposite identifier class:

<cl ass nanme="Foo" tabl e="FOCS">
<conposi te-id nanme="Conpl d* cl ass="FooConpositel D'>
<key- property nane="String"/>
<key- property name="Short"/>
<key- property nane="Date" colum="date " type="Date"/>
</ conposi te-i d>
<property nane="Nane"/>

</ cl ass>

Now, any foreign keys into the table FOos are also composite. Y ou must declare this in your mappings for other
classes. An association to Foo would be declared like this:

<many-t o- one nanme="Foo" class="Fo0">

<I-- the "class" attribute is optional, as usual -->
<col um nane="foo_string"/>
<col um nane="foo_short"/>
<col um nane="foo_date"/>

</ many-t o- one>

This new <col urm> tag is also used by multi-column custom types. Actually it is an aternative to the col um at-
tribute everywhere. A collection with elements of type Foo would use:

<set name="Foos">
<key col um="owner _i d"/>
<many-t o- many cl ass="Foo">
<col um nane="foo_string"/>
<col um nane="foo_short"/>
<col um nane="foo_date"/>
</ many-t o- many>
</set>

On the other hand, <one- t o- many>, as usual, declares no columns.
If Foo itself contains collections, they will also need a composite foreign key.

<cl ass name="Foo" >

<set nanme="Dates" |azy="true">
<key> <lI-- a collection inherits the conposite key type -->
<col um nane="foo_string"/>
<col um nane="foo_short"/>
<col um nane="foo_date"/ >
</ key>
<el ement col um="foo_date" type="Date"/>
</set>

NHibernate 1.0.2 57

Component Mapping

</ cl ass>

7.5. Dynamic components

Y ou may even map a property of typel bi cti onary:

<dynami c- conponent nanme="User Attri butes">

<property nane="Foo" col um="FQOO'/>

<property name="Bar" col um="BAR'/>

<many-t o- one nane="Baz" cl ass="Baz" col um="BAz"/>
</ dynanmni c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The advantage of this kind of
mapping is the ability to determine the actual properties of the component at deployment time, just by editing
the mapping document. (Runtime manipulation of the mapping document is also possible, using a DOM pars-

er.)

NHibernate 1.0.2

58

Chapter 8. Inheritance Mapping

8.1. The Three Strategies

NHibernate supports the three basic inheritance mapping strategies.

* table per class hierarchy
e table per subclass
» table per concrete class (some limitations)

It is even possible to use different mapping strategies for different branches of the same inheritance hierarchy,
but the same limitations apply as apply to table-per-concrete class mappings. NHibernate does not support mix-
ing <subcl ass> mappings and <j oi ned- subcl ass> Mappings inside the same <cl ass> element.

Suppose we have an interface | Paynent , with implementors Cr edi t Car dPayment , CashPaynent , ChequePay-
ment . The table-per-hierarchy mapping would look like:

<cl ass nane="|Paynent" tabl e=" PAYMENT" >
<id name="1d" type="Int64" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nat or col um="PAYMENT TYPE" type="String"/>
<property nanme="Amount" col utm="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nat or - val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

Exactly onetableisrequired. Thereisone big limitation of this mapping strategy: columns declared by the sub-
classes may not have NOT NULL constraints.

A table-per-subclass mapping would ook like:

<cl ass nanme="|Paynment" tabl e=" PAYMENT" >
<id name="1d" type="Int64" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<property nanme="Amount" col utm="AMOUNT"/ >

<j oi ned- subcl ass nane="Credi t Car dPaynent" tabl e=" CREDI T_PAYMENT" >
<key col umm="PAYMENT | D'/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="CashPaynment" tabl e=" CASH_PAYMENT" >
<key col umm="PAYMENT | D'/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<key col um="PAYMENT | D'/ >

</ j oi ned- subcl ass>

NHibernate 1.0.2 59

Inheritance Mapping

</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

Note that NHibernate's implementation of table-per-subclass requires no discriminator column. Other object/
relational mappers use a different implementation of table-per-subclass which requires a type discriminator
column in the superclass table. The approach taken by NHibernate is much more difficult to implement but ar-
guably more correct from arelational point of view.

For either of these two mapping strategies, a polymorphic association to | Paynment iS mapped using
<many-to-one>.

<many-t o- one nane="Paynent"
col um=" PAYMENT"
cl ass="1| Paynent"/ >

The table-per-concrete-class strategy is very different.

<cl ass nanme="Credit CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="1d" type="Int64" col um="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<property nane="Amount" col um="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass nanme="CashPayment" tabl e=" CASH_PAYMENT" >
<id name="1d" type="Int64" col um="CASH PAYMENT_ | D'>
<generator class="native"/>

</id>
<property nane="Anmount" col utm="CASH_AMOUNT"/ >

</ cl ass>
<cl ass nanme="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<id name="1d" type="Int64" col um="CHEQUE PAYMENT | D'>
<generator class="native"/>

</id>
<property nanme="Amount" col utm="CHEQUE AMOUNT"/ >

</ cl ass>

Three tables were required. Notice that nowhere do we mention the | Paynent interface explicitly. Instead, we
make use of NHibernate's implicit polymorphism. Also natice that properties of | Payment are mapped in each
of the subclasses.

In this case, a polymorphic association to | Payrment is mapped using <any>.

<any nanme="Paynent"
net a- t ype="cl ass"
i d-type="1nt 64" >
<col um nane="PAYMENT CLASS"/ >
<col um nane="PAYMENT_I D'/ >
</ any>

It would be better if we defined an | User Type as the et a- t ype, to handle the mapping from type discriminator
strings to | Paynent subclass.

<any nane="paynent"
met a-t ype="Paynent Met aType"
i d-type="1nt64">

NHibernate 1.0.2 60

Inheritance Mapping

<col um nanme="PAYMENT_TYPE"/> <!-- CREDIT, CASH or CHEQUE -->
<col um nane="PAYMENT | D'/ >
</ any>

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<cl ass> element (and since | Paynent isjust an interface), each of the subclasses could easily be part of another
table-per-class or table-per-subclass inheritance hierarchy! (And you can still use polymorphic queries against
the Paynent interface.)

<cl ass nanme="Credit CardPaynent" tabl e="CREDI T_PAYMENT" >
<id name="1d" type="Int64" col um="CRED T_PAYMENT_| D">
<generator class="native"/>
</id>
<di scri m nator colum="CREDI T_CARD' type="String"/>
<property nanme="Amount" col utm="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent " di scri m nat or-val ue="MXC'/ >
<subcl ass nane="Vi saPaynent" di scri m nator-val ue="VI SA"/ >
</ cl ass>

<cl ass nanme="Nonel ectroni cTransacti on” tabl e=" NONELECTRONI C_TXN'>
<id name="1d" type="Int64" colum="TXN_|D'>
<generator class="native"/>
</id>

<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col um="PAYMENT | D'/ >
<property nane="Anmount" col utm="CASH_AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nane="ChequePaynent" t abl e=" CHEQUE PAYMENT" >
<key col umm="PAYMENT | D'/ >
<property nane="Anmpunt" col um="CHEQUE AMOUNT"/ >

</ j oi ned- subcl ass>
</ cl ass>

Once again, we don't mention | Paynment explicitly. If we execute a query against the | Paynment interface - for
example, from | Paynent - NHibernate automatically returns instances of Credit Car dPaynent (and its sub-
classes, since they also implement | Paynent), CashPaynent and ChequePayment but not instances of Nonel ec-
troni cTransacti on.

8.2. Limitations

NHibernate assumes that an association maps to exactly one foreign key column. Multiple associations per for-
eign key are tolerated (you might need to specify i nverse="true" Or i nsert="fal se" update="fal se"), but
there is no way to map any association to multiple foreign keys. This means that:

< when an association is modified, it is aways the same foreign key that is updated
« when an association is fetched lazily, a single database query is used
« when an association is fetched eagerly, it may be fetched using a single outer join

In particular, it implies that polymorphic one-to-many associations to classes mapped using the table-
per-concrete-class strategy are not supported. (Fetching this association would require multiple queries or mul-
tiplejoins.)

The following table shows the limitations of table-per-concrete-class mappings, and of implicit polymorphism,

NHibernate 1.0.2 61

Inheritance Mapping

in NHibernate.

Table 8.1. Features of inheritance mappings

Inherit- Poly- Poly- Poly- Poly- Poly- Poly- Poly-

ance mor phic mor phic mor phic mor phic mor phic mor phic mor phic

strategy many- one-to-one one- many- Load()/Get queries joins

to-one to-many to-many O

table- <nmany-to-o0 | <one-to-on <one-to-ma <many-to-m s. Get(type from Pay- from O der

per- ne> e> ny> any> of (I Paymen nent p o join

class t), id) 0. payment

hierarchy p

table- <many-to-o <one-to0-on | <one-to-ma <many-to-m s.Cet(type fromlPay- from O der

per- ne> e> ny> any> of (I Paymen nent p o join

subclass t), id) 0. Paynent
p

table- <any> not suppor- Nnot suppor- <many-to-a Useaquery from Pay- not suppor-

per- ted ted ny> ment p ted

concrete-

class

(implicit

polymorph-

ism)

NHibernate 1.0.2

62

Chapter 9. Manipulating Persistent Data

9.1. Creating a persistent object

An object (entity instance) is either transient or persistent with respect to a particular | Sessi on. Newly instanti-
ated objects are, of course, transient. The session offers services for saving (ie. persisting) transient instances:

DonmesticCat fritz = new DonmesticCat();
fritz. Color = Col or. G nger;

fritz.Sex = 'M;

fritz.Nanme = "Fritz";

I ong generatedld = (long) sess. Save(fritz);

Donesti cCat pk = new DonesticCat();
pk. Col or = Col or. Tabby;

pk.Sex = 'F';

pk. Nane = "PK";

pk. Kittens = new HashSet ();

pk. AddKitten(fritz);

sess. Save(pk, 1234L);

The single-argument Save() generates and assigns a unique identifier to fritz. The two-argument form at-
tempts to persist pk using the given identifier. We generally discourage the use of the two-argument form since
it may be used to create primary keys with business meaning.

Associated objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a
foreign key column. There is never arisk of violating foreign key constraints. However, you might violate a
NOT NULL constraint if you Save() the objectsin the wrong order.

9.2. Loading an object

The Load() methods of | Sessi on give you away to retrieve a persistent instance if you already know itsidenti-
fier. One version takes a class object and will load the state into a newly instantiated object. The second version
allows you to supply an instance into which the state will be loaded. The form which takes an instance is only
useful in special circumstances (DIY instance pooling etc.)

Cat fritz = (Cat) sess.lLoad(typeof(Cat), generatedld);

| ong pkld = 1234;
Donesti cCat pk = (DonesticCat) sess.Load(typeof(Cat), pkld);

Cat cat = new DonesticCat();
/1 load pk's state into cat
sess. Load(cat, pkld);

| Set kittens = cat.Kittens;

Note that Load() will throw an unrecoverable exception if there is no matching database row. If the classis
mapped with a proxy, Load() returns an object that is an uninitialized proxy and does not actually hit the data-
base until you invoke a method of the object. This behaviour is very useful if you wish to create an association
to an object without actually loading it from the database.

If you are not certain that a matching row exists, you should use the Get () method, which hits the database im-
mediately and returns null if there is no matching row.

NHibernate 1.0.2 63

Manipulating Persistent Data

Cat cat = (Cat) sess.CGet(typeof(Cat), id);
if (cat==null) {

cat = new Cat ();

sess. Save(cat, id);

}

return cat;

You may also load an objects using an SQL SELECT ... FOR UPDATE. See the next section for a discussion of
NHibernate LockMbdes.

Cat cat = (Cat) sess.Cet(typeof(Cat), id, LockMdde. Upgrade);

Note that any associated instances or contained collections are not selected FOR UPDATE.

It is possible to re-load an object and all its collections at any time, using the Ref r esh() method. Thisis useful
when database triggers are used to initialize some of the properties of the object.

sess. Save(cat);
sess. Flush(); //force the SQ | NSERT
sess. Refresh(cat); //re-read the state (after the trigger executes)

9.3. Querying

If you don't know the identifier(s) of the object(s) you are looking for, use the Fi nd() methods of | Sessi on.
NHibernate supports a simple but powerful object oriented query language.

IList cats = sess. Fi nd(
"fromCat as cat where cat.Birthdate = ?",
dat e,
NHi bernateltil . Date

DE

I List mates = sess. Fi nd(
"select mate fromCat as cat join cat.Mate as mate " +
"where cat.nane = ?",
nane,
NH bernateUtil. String

)
IList cats = sess.Find("from Cat as cat where cat.Mate.Birthdate is null™");

I List noreCats = sess. Fi nd(
"fromCat as cat where " +

"cat.Nane = 'Fritz' or cat.id = ? or cat.id = ?",
new object[] { idl, id2 },
new | Type[] { NH bernateUtil.Int64, NH bernateUtil.Int64 }

)

IList mates = sess. Fi nd(
"from Cat as cat where cat.Mate = ?",
izi,
NH bernateUtil.Entity(typeof(Cat))
)

I Li st problenms = sess. Fi nd(
"from Gol dFi sh as fish " +
"where fish.Birthday > fish. Deceased or fish.Birthday is null"

DE

The second argument to Fi nd() accepts an object or array of objects. The third argument accepts a NHibernate
type or array of NHibernate types. These given types are used to bind the given objects to the ? query place-

NHibernate 1.0.2 64

Manipulating Persistent Data

holders (which map to input parameters of an ADO.NET | bbConmrand). Just as in ADO.NET, you should use
this binding mechanism in preference to string manipulation.

The NHi bernatelti | class defines a number of static methods and constants, providing access to most of the
built-in types, asinstances of NHi ber nat e. Type. | Type.

If you expect your query to return a very large number of objects, but you don't expect to use them all, you
might get better performance from the Enunerable() methods, which return a Sys-
tem Col | ecti ons. | Enuner abl e. The iterator will load objects on demand, using the identifiers returned by an
initial SQL query (n+1 selects total).

/1 fetch ids
| Enuner abl e en = sess. Enunerabl e("from eg. Quix q order by g.Likeliness");
foreach (Qux qux in en)

{
/1l something we coul dnt express in the query
i f (qux.Cal cul at eConpl i catedAl gorithn()) {
/1 dont need to process the rest
br eak;
}
}

The Enuner abl e() method also performs better if you expect that many of the objects are already loaded and
cached by the session, or if the query results contain the same objects many times. (When no data is cached or
repeated, Fi nd() is almost always faster.) Heres an example of a query that should be called using Enuner -
abl e():

| Enuner abl e en = sess. Enuner abl e(
"sel ect customer, product " +
"from Cust oner custoner, " +
"Product product " +
"join custoner.Purchases purchase " +
"where product = purchase. Product"

Calling the previous query using Fi nd() would return a very large ADO.NET result set containing the same
data many times.

NHibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

| Enuner abl e foosAndBars = sess. Enuner abl e(
"sel ect foo, bar from Foo foo, Bar bar " +
"where bar.Date = foo. Date"

DE

foreach (object[] tuple in foosAndBars)

{
Foo foo = tuple[0]; Bar bar = tuple[l];

9.3.1. Scalar queries

Queries may specify a property of aclassin the sel ect clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar” results.

| Enunerabl e results = sess. Enuner abl e(
"select cat.Color, min(cat.Birthdate), count(cat) fromCat cat " +
"group by cat. Col or"

I

foreach (object[] rowin results)

NHibernate 1.0.2 65

Manipulating Persistent Data

{
Col or type = (Color) row0];
Dat eTi me ol dest = (DateTine) row 1];
int count = (int) row2];

}

| Enuner abl e en = sess. Enuner abl e(
"sel ect cat.Type, cat.Birthdate, cat.Nane from DonesticCat cat"

)

IList list = sess. Find(
"sel ect cat, cat.Mate.Nane from DonesticCat cat"
DE

9.3.2. The IQuery interface

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should obtain an instance of NHi ber nat e. | Query:

| Query q = sess. CreateQuery("from DonesticCat cat");
g. Set Fi rst Resul t (20) ;

g. Set MaxResul t s(10) ;

IList cats = q.List();

You may even define a hamed query in the mapping document. (Remember to use a CDATA section if your
query contains characters that could be interpreted as markup.)

<query nane="Eg. Donmesti cCat. by. nane. and. m ni num wei ght " ><! [CDATA[
from Eg. DonesticCat as cat
where cat.Name = ?
and cat.Wight > ?
1 1></query>

| Query g = sess. Get NanedQuery("Eg. Donmesti cCat . by. nanme. and. mi ni rum wei ght");
g. Set String(0, nane);

g. Set I nt32(1, m nWight);

IList cats = q.List();

The query interface supports the use of named parameters. Named parameters are identifiers of the form : nane
in the query string. There are methods on | Query for binding values to named or positional parameters.
NHibernate numbers parameters from zero. The advantages of named parameters are:

* named parameters are insensitive to the order they occur in the query string
¢ they may occur multiple timesin the same query
» they are self-documenting

/I named paraneter (preferred)

| Query q = sess. CreateQuery("from Donmesti cCat cat where cat.Nane = :nane");
g. Set String("name", "Fritz");

| Enuner abl e cats = g. Enunerabl e();

/] positional paraneter

Il Query q = sess. CreateQuery("from Donesti cCat cat where cat.Nanme = ?");
g.SetString(0, "lzi");

| Enuner abl e cats = qg. Enunmerabl e();

/I naned paraneter |ist
I Li st nanes = new ArraylList();

NHibernate 1.0.2 66

Manipulating Persistent Data

nanmes. Add("lzi");

nanmes. Add("Fritz");

| Query q = sess. CreateQuery("from Donmesti cCat cat where cat.Nane in (:namesList)");
g. Set Par anet er Li st (" namesLi st", nanes);

IList cats = q.List();

9.3.3. Filtering collections

A collection filter is a special type of query that may be applied to a persistent collection or array. The query
string may refer to t hi s, meaning the current collection element.

I Col I ection blackKittens = session.Filter(
pk.Kittens, "where this.Color = ?", Color.Black, NH bernateltil.Enun(typeof(Color))
)

The returned collection is considered a bag.

Observe that filters do not require af r omclause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

| Col | ection blackKittenMates = session. Filter(
pk.Kittens, "select this. Mate where this.Color = Eg. Col or. Bl ack"

)

9.3.4. Criteria queries

HQL is extremely powerful but some people prefer to build queries dynamically, using an object oriented AP,
rather than embedding strings in their .NET code. For these people, NHibernate provides an intuitive | Cri ter -
i a query API.

ICriteria crit = session.CreateCriteria(typeof(Cat));
crit.Add(Expression.Eq("color", Eg.Color.Black));
crit.Set MaxResul ts(10);

IList cats = crit.List();

If you are uncomfortable with SQL-like syntax, this is perhaps the easiest way to get started with NHibernate.
This API is also more extensible than HQL. Applications might provide their own implementations of the
I Criterion interface.

9.3.5. Queries in native SQL

You may expressaquery in SQL, using Creat eSQLQuer y() . You must enclose SQL aliasesin braces.

I List cats = session. CreateSQQuery(
"SELECT {cat.*} FROM CAT {cat} WHERE ROWNUMK10",
"cat",
t ypeof (Cat)

).List();

I List cats = session. CreateSQ.Query(
"SELECT {cat}.ID AS {cat.Id}, {cat}.SEX AS {cat.Sex}, " +
"{cat}. MATE AS {cat. Mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROANUMK10",
"cat",
t ypeof (Cat)
). list()

NHibernate 1.0.2 67

Manipulating Persistent Data

SQL queries may contain named and positional parameters, just like NHibernate queries.

9.4. Updating objects

9.4.1. Updating in the same ISession

Transactional persistent instances (ie. objects loaded, saved, created or queried by the | Sessi on) may be ma-
nipulated by the application and any changes to persistent state will be persisted when the | Sessi on is flushed
(discussed later in this chapter). So the most straightforward way to update the state of an object isto Load() it,
and then manipulate it directly, whilethe | Sessi on is open:

DonesticCat cat = (DonesticCat) sess.lLoad(typeof(Cat), 69L);
cat. Name = "PK";
sess. Flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore NHibernate offers an al-
ternate approach.

9.4.2. Updating detached objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for manipulation, then
save the changes in a new transaction. (Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure transaction isolation.) This approach requires a dightly different
programming model to the one described in the last section. NHibernate supports this model by providing the
method Sessi on. Updat e() .

/1 in the first session

Cat cat = (Cat) firstSession.Load(typeof(Cat), catld);
Cat potential Mate = new Cat ();

firstSession. Save(potential Mate);

/1 in a higher tier of the application
cat. MVate = potenti al Mat e;

// later, in a new session
secondSessi on. Update(cat); // update cat
secondSessi on. Update(mate); // update nate

If the cat with identifier cat | d had already been loaded by secondSessi on when the application tried to update
it, an exception would have been thrown.

The application should individually Updat e() transient instances reachable from the given transient instance if
and only if it wants their state also updated. (Except for lifecycle objects, discussed later.)

Hibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or update the persistent state associated with its current identifier. The SaveOr Updat e() method
now implements this functionality.

NHibernate distinguishes "new" (unsaved) instances from "existing" (saved or loaded in a previous session) in-
stances by the value of their identifier (or version, or timestamp) property. The unsaved- val ue attribute of the
<i d> (or <versi on>, Or <ti mest anp>) mapping specifies which values should be interpreted as representing a
"new" instance.

NHibernate 1.0.2 68

Manipulating Persistent Data

<id name="1d" type="Int64" col um="uid" unsaved-val ue="0">
<generator class="hilo"/>
</id>

The allowed values of unsaved- val ue are:

e any - dwayssave

* none - always update

* null -savewhen identifier isnull

e valididentifier value - save when identifier is null or the given value

* undefined - if set for versi on oOr ti mest anp, then identifier check is used

If unsaved- val ue is not specified for a class, NHibernate will attempt to guess it by creating an instance of the
class using the no-argument constructor and reading the property value from the instance.

[/ in the first session
Cat cat = (Cat) firstSession.Load(typeof(Cat), catlD);

/1 in a higher tier of the application
Cat mate new Cat ();
cat. Mate mat e;

/1 later, in a new session
secondSessi on. SaveOr Updat e(cat) ; /'l update existing state (cat has a non-null id)
secondSessi on. SaveOr Update(mate); // save the new instance (mate has a null id)

The usage and semantics of SaveOr Updat e() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use Updat e() or
SaveOr Updat e() . Some whole applications will never use either of these methods.

Usually Updat e() or SaveOr Updat e() are used in the following scenario:

» theapplication loads an object in the first session

» theobject is passed up to the Ul tier

« some modifications are made to the object

« theobject is passed back down to the business logic tier

« the application persists these modifications by calling updat e() in a second session

SaveOr Updat e() doesthe following:

» if the object isalready persistent in this session, do nothing

« if the object has no identifier property, save() it

e if the object's identifier matches the criteria specified by unsaved- val ue, save() it

« if the object is versioned (ver si on Or ti mest anp), then the version will take precedence to identifier check,
unless the versions unsaved- val ue="undef i ned" (default value)

« if another object associated with the session has the same identifier, throw an exception

The last case can be avoided by using SaveOr Updat eCopy(Gbj ect o) . This method copies the state of the given
object onto the persistent object with the same identifier. If there is no persistent instance currently associated
with the session, it will be loaded. The method returns the persistent instance. If the given instance is unsaved
or does not exist in the database, NHibernate will save it and return it as a newly persistent instance. Otherwise,
the given instance does not become associated with the session. In most applications with detached objects, you
need both methods, SaveOr Updat e() and SaveOr Updat eCopy() .

9.4.3. Reattaching detached objects

NHibernate 1.0.2 69

Manipulating Persistent Data

The Lock() method allows the application to reassociate an unmodified object with anew session.

//just reassoci ate:

sess. Lock(fritz, LockMbde. None);

//do a version check, then reassoci ate:

sess. Lock(i zi, LockMde. Read);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. Lock(pk, LockMbdde. Upgrade);

9.5. Deleting persistent objects

| Sessi on. Del et e() Wwill remove an object's state from the database. Of course, your application might still
hold areferencetoit. Soit's best to think of Del et e() as making a persistent instance transient.

sess. Del et e(cat) ;

Y ou may also delete many objects at once by passing a NHibernate query string to Del et e() .

Y ou may now delete objects in any order you like, without risk of foreign key constraint violations. Of course,
it isstill possible to violate aNOT NULL constraint on a foreign key column by deleting objects in the wrong or-
der.

9.6. Flush

From time to time the | Sessi on will execute the SQL statements needed to synchronize the ADO.NET connec-
tion's state with the state of objects held in memory. This process, flush, occurs by default at the following
points

* from someinvocations of Fi nd() or Enuner abl e()
e from NHi bernate. | Transacti on. Commi t ()
¢ from1 Session. Fl ush()

The SQL statements are issued in the following order

all entity insertions, in the same order the corresponding objects were saved using | Sessi on. Save()

al entity updates

all collection deletions

al collection element deletions, updates and insertions

all collection insertions

all entity deletions, in the same order the corresponding objects were deleted using | Sessi on. Del et e()

SIS

(An exception is that objects using nat i ve ID generation are inserted when they are saved.)

Except when you explicity Fl ush(), there are absolutely no guarantees about when the Sessi on executes the
JDBC calls, only the order in which they are executed. However, NHibernate does guarantee that the 1 Ses-
si on. Fi nd(..) methodswill never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The Fl ushMode class defines
three different modes: only flush at commit time (and only when the NHibernate | Tr ansacti on API is used),
flush automatically using the explained routine, or never flush unless Fi ush() is called explicitly. The last
mode is useful for long running units of work, where an |Session is kept open and disconnected for along time
(see Section 10.4, “Optimistic concurrency control”).

NHibernate 1.0.2 70

Manipulating Persistent Data

sess = sf.OpenSession();

| Transaction tx = sess. Begi nTransaction();

sess. Fl ushMode = Fl ushMbde. Conmit; //allow queries to return stale state
Cat izi = (Cat) sess.LlLoad(typeof(Cat), id);

izi.Nane = "iznizi";

/| execute sonme queries....

sess. Find("from Cat as cat left outer join cat.Kittens kitten");
//change to izi is not flushed!

tx.Commit(); //flush occurs

9.7. Ending a Session

Ending a session involves four distinct phases:

» flush the session

e commit the transaction
¢ closethe session

¢ handle exceptions

9.7.1. Flushing the Session

If you happen to be using the | Transact i on API, you don't need to worry about this step. It will be performed
implicitly when the transaction is committed. Otherwise you should call Sessi on. Fl ush() to ensure that all
changes are synchronized with the database.

9.7.2. Committing the database transaction
If you are using the NHibernate | Tr ansact i on API, thislookslike:

tx.Commit(); // flush the session and commit the transaction

If you are managing ADO.NET transactions yourself you should manually Commi t () the ADO.NET transac-
tion.

sess. Fl ush();
current Transacti on. Commit () ;

If you decide not to commit your changes:
tx. Rol | back(); // rollback the transaction
or:

current Transacti on. Rol | back();

If you rollback the transaction you should immediately close and discard the current session to ensure that
NHibernate'sinternal state is consistent.

9.7.3. Closing the ISession

A call to 1 Sessi on. O ose() marksthe end of asession. The main implication of d ose() isthat the ADO.NET
connection will be relinquished by the session.

NHibernate 1.0.2 71

Manipulating Persistent Data

tx. Comm t();
sess. Cl ose();

sess. Fl ush();
current Transacti on. Commit();
sess. O ose();

If you provided your own connection, d ose() returnsareferenceto it, so you can manualy closeit or return it
to the pool. Otherwise c ose() returnsit to the pool.

9.8. Exception handling

NHibernate use might lead to exceptions, usually Hi ber nat eExcept i on. This exception can have a nested inner
exception (the root cause), use the | nner Except i on property to accessit.

If the | Sessi on throws an exception you should immediately rollback the transaction, call 1 Sessi on. d ose()
and discard the | Sessi on instance. Certain methods of | Sessi on will not leave the session in a consistent state.

For exceptions thrown by the data provider while interacting with the database, NHibernate will wrap the error
in an instance of ADOException. The underlying exception is accessible by calling ADOExcep-
tion. | nner Exception.

The following exception handling idiom shows the typical case in NHibernate applications:

using (1 Session sess = factory. OpenSessi on())
using (Il Transaction tx = sess. Begi nTransaction())

/1 do sone work

tx. Commi t ()

Or, when manually managing ADO.NET transactions.

| Sessi on sess = factory. openSession();
try

/1l do sonme work

sess. Fl ush();
current Transacti on. Commit();

catch (Exception e)

{
current Transacti on. Rol | back();
t hr ow,

}

finally

{
sess. Cl ose();

}

9.9. Lifecyles and object graphs

To save or update all objectsin agraph of associated objects, you must either

e Save(), SaveOr Updat e() Or Updat e() each individual object OR

NHibernate 1.0.2 72

Manipulating Persistent Data

e map associated objectsusing cascade="al | * Or cascade="save- updat e".

Likewise, to delete all objectsin agraph, either

e Delete() eachindividua object OR
e map associated objects using cascade="al | ", cascade="al | - del et e- or phan" Of cascade="del ete".

Recommendation:

« If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="al | .

e Otherwise, save() and Del ete() it explicitly from application code. If you really want to save yourself
some extratyping, use cascade="save- updat e" and explicit Del et e() .

Mapping an association (many-to-one, or collection) with cascade="al | * marks the association as a parent/
child style relationship where save/update/deletion of the parent results in save/update/deletion of the
child(ren). Futhermore, a mere reference to a child from a persistent parent will result in save / update of the
child. The metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automat-
ically deleted, except in the case of a <one- t o- many> association mapped with cascade="al | - del et e- or phan".
The precise semantics of cascading operations are as follows:

e If aparentissaved, al children are passed to SaveOr Updat e()

e |If aparentispassed to Updat e() Or SaveOr Updat e() , all children are passed to SaveOr Updat e()

e If atransient child becomes referenced by a persistent parent, it is passed to SaveOr Updat e()

e |f aparentisdeleted, al children are passed to Del et e()

« |If atransient child is dereferenced by a persistent parent, nothing special happens (the application should
explicitly delete the child if necessary) unless cascade="al |l -del ete-orphan", in which case the
"orphaned" child is deleted.

NHibernate does not fully implement "persistence by reachability", which would imply (inefficient) persistent
garbage collection. However, due to popular demand, NHibernate does support the notion of entities becoming
persistent when referenced by another persistent object. Associations marked cascade="save- updat e" behave
in this way. If you wish to use this approach throughout your application, it's easier to specify the def aul t -
cascade attribute of the <hi ber nat e- mappi ng> €element.

9.10. Interceptors

The Il nterceptor interface provides callbacks from the session to the application allowing the application to
inspect and / or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following I 1 nt er cept or automatically
sets the Creat eTi mest anp When an 1 Audi t abl e is created and updates the Last Updat eTi mest anp property
when an | Audi t abl e is updated.

usi ng System
usi ng NHi ber nat e. Type;

nanespace NH ber nate. Test

{
[Serializabl e]

public class Auditlnterceptor : I|Interceptor

{

private int updates;
private int creates;

public void OnDel et e(object entity,
obj ect id,

NHibernate 1.0.2 73

Manipulating Persistent Data

object[] state,
string[] propertyNanes,
I Type[] types)

{
/1 do not hi ng
}
publ i ¢ bool ean OnFl ushDirty(object entity,
obj ect id,
object[] currentState,
obj ect[] previousState,
string[] propertyNanes,
I Type[] types) {
if (entity is lAuditable)
{
updat es++;
for (int i=0; i < propertyNanes.LlLength; i++)
{
if ("LastUpdateTi nestanp" == propertyNanes[i])
{
currentState[i] = DateTi me. Now;
return true;
}
}
}
return false;
}

publ i ¢ bool ean OnLoad(object entity,
object id,
object[] state,
string[] propertyNanes,
I Type[] types)

{
return false;
}
publ i ¢ bool ean OnSave(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
I Type[] types)
{
if (entity is |Auditable)
{
creat es++;
for (int i=0; i<propertyNanes.Length; i++)
{
if ("CreateTinestanp" == propertyNanes[i])
{
state[i] = DateTi ne. Now,
return true;
}
}
}
return false;
}
public void PostFlush(lCollection entities)
{
Consol e. Qut . WiteLine("Creations: {0}, Updates: {1}", creates,
}
public void PreFlush(lCollection entities) {
updat es=0;
creat es=0;

updat es) ;

NHibernate 1.0.2

74

Manipulating Persistent Data

The interceptor would be specified when a session is created.

| Sessi on session = sf.QpenSessi on(new Auditlnterceptor());

Y ou may also set an interceptor on aglobal level, using the Confi gur ati on:

new Configuration().Setlnterceptor(new Auditlnterceptor());

9.11. Metadata API

NHibernate requires a very rich meta-level model of al entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use NHibernate's metadata to imple-
ment a"smart”" deep-copy agorithm that understands which objects should be copied (eg. mutable value types)
and which should not (eg. immutable value types and, possibly, associated entities).

NHibernate exposes metadata via the | d assMet adata and | Col | ect i onMet adat a interfaces and the | Type
hierarchy. Instances of the metadata interfaces may be obtained from the | Sessi onFactory.

Cat fritz = ;

| d assMet adat a cat Meta = sessionfactory. Get 0 assMet adat a(t ypeof (Cat));
long id = (long) catMeta. Getldentifier(fritz);

obj ect[] propertyVal ues = cat Meta. Get PropertyVal ues(fritz);

string[] propertyNanes = cat Met a. PropertyNanes;

| Type[] propertyTypes = cat Meta. PropertyTypes;

/1 get an IDictionary of all properties which are not collections or associations
/1 TODO what about conponents?

I Di ctionary nanedVal ues = new HashMap();
for (int i=0; i<propertyNanes.Length; i++)

{
if (!propertyTypes[i].|sEntityType && !propertyTypes[i].|sCollectionType)

nanmedVal ues[propertyNanmes[i]] = propertyVal ues[i];

NHibernate 1.0.2 75

Chapter 10. Transactions And Concurrency

NHibernate is not itself a database. It is a lightweight object-relational mapping tool. Transaction management
is delegated to the underlying database connection. If the connection is enlisted with a distributed transaction,
operations performed by the | Sessi on are atomically part of the wider distributed transaction. NHibernate can
be seen as athin adapter to ADO.NET, adding object-oriented semantics.

10.1. Configurations, Sessions and Factories

An | Sessi onFactory IS an expensive-to-create, threadsafe object intended to be shared by all application
threads. An | Sessi on is an inexpensive, non-threadsafe object that should be used once, for a single business
process, and then discarded. For example, when using NHibernate in an ASP.NET application, pages could ob-
tain an | Sessi onFact ory using:

| Sessi onFactory sf = d obal . Sessi onFact ory;

Each call to a service method could create anew | Sessi on, Fl ush() it, Commi t () itstransaction, d ose() it and
finally discard it. (The | Sessi onFact ory may also be kept in a static Sngleton helper variable.)

We use the NHibernate | Transacti on APl as discussed previoudy, a single commit () of a NHibernate
I Transact i on flushes the state and commits any underlying database connection (with special handling of dis-
tributed transactions).

Ensure you understand the semantics of Fl ush() . Flushing synchronizes the persistent store with in-memory
changes but not vice-versa. Note that for all NHibernate ADO.NET connectiong/transactions, the transaction
isolation level for that connection appliesto all operations executed by NHibernate!

The next few sections will discuss aternative approaches that utilize versioning to ensure transaction atomicity.
These are considered "advanced" approaches to be used with care.

10.2. Threads and connections

Y ou should observe the following practices when creating NHibernate Sessions:

* Never create more than one concurrent | Sessi on Or | Tr ansact i on instance per database connection.

« Beextremely careful when creating more than one | Sessi on per database per transaction. The I Sessi on it-
self keepstrack of updates made to loaded objects, so adifferent | Sessi on might see stale data.

e Thel Sessi on isnot threadsafe! Never access the same | Sessi on in two concurrent threads. An | Sessi on is
usualy only a single unit-of-work!

10.3. Considering object identity

The application may concurrently access the same persistent state in two different units-of-work. However, an
instance of a persistent classis never shared between two | Sessi on instances. Hence there are two different no-
tions of identity:

Database Identity
foo.ld. Equal s(bar.1d)

NHibernate 1.0.2 76

Transactions And Concurrency

CLR Identity

foo == bar

Then for objects attached to a particular Sessi on, the two notions are equivalent. However, while the applica-
tion might concurrently access the "same" (persistent identity) business object in two different sessions, the two
instances will actually be "different" (CLR identity).

This approach leaves NHibernate and the database to worry about concurrency. The application never needs to
synchronize on any business object, aslong asit sticks to a single thread per | Sessi on or object identity (within
an | Sessi on the application may safely use == to compare objects).

10.4. Optimistic concurrency control

Many business processes require a whol e series of interactions with the user interleaved with database accesses.
In web and enterprise applications it is not acceptable for a database transaction to span a user interaction.

Maintaining isolation of business processes becomes the partial responsibility of the application tier, hence we
call this process a long running application transaction. A single application transaction usually spans several
database transactions. It will be atomic if only one of these database transactions (the last one) stores the up-
dated data, al others simply read data.

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. NHibernate provides for three possible approaches to writing application code that uses
optimistic concurrency.

10.4.1. Long session with automatic versioning

A single| Sessi on instance and its persistent instances are used for the whole application transaction.

The | sessi on uses optimistic locking with versioning to ensure that many database transactions appear to the
application as a single logical application transaction. The | Sessi on is disconnected from any underlying
ADO.NET connection when waiting for user interaction. This approach is the most efficient in terms of data
base access. The application need not concern itself with version checking or with reattaching detached in-
stances.

/1 foo is an instance | oaded earlier by the Session
sessi on. Reconnect () ;

transaction = session. Begi nTransaction();

foo. Property = "bar";

sessi on. Fl ush();

transaction. Commit();

sessi on. Di sconnect () ;

The f oo object till knows which | Sessi on it was loaded it. As soon as the | Sessi on has an ADO.NET con-
nection, we commit the changes to the object.

This pattern is problematic if our | Sessi on istoo big to be stored during user think time, e.g. an Ht t pSessi on
should be kept as small as possible. As the | Sessi on is aso the (mandatory) first-level cache and contains all
loaded objects, we can propably use this strategy only for a few request/response cycles. Thisis indeed recom-
mended, asthe | Sessi on will soon also have stale data.

10.4.2. Many sessions with automatic versioning

NHibernate 1.0.2 77

Transactions And Concurrency

Each interaction with the persistent store occursin anew | Sessi on. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
ginaly loaded in another |Session and then "reassociates’ them using | Session. Update() O I Ses-
si on. SaveOr Updat e() .

/1l foo is an instance | oaded by a previ ous Session
foo. Property = "bar";

session = factory. OpenSession();

transacti on = session. Begi nTransacti on();

sessi on. SaveOr Updat e(f 00) ;

session. Fl ush();

transaction. Commit();

session. d ose();

You may also call Lock() instead of Updat e() and use LockMde. Read (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

10.4.3. Application version checking

Each interaction with the database occurs in a new | Sessi on that reloads all persistent instances from the data-
base before manipulating them. This approach forces the application to carry out its own version checking to
ensure application transaction isolation. (Of course, NHibernate will still update version numbers for you.) This
approach isthe least efficient in terms of database access.

/1 foo is an instance | oaded by a previ ous Session

session = factory. OpenSessi on();

transacti on = session. Begi nTransacti on();

int ol dVersion = foo. Version

sessi on. Load(foo, foo.Key);

if (oldVersion != foo.Version) throw new Stal eQbj ect St at eException();
foo. Property = "bar";

sessi on. Fl ush();

transacti on. Commt () ;

session. cl ose();

Of course, if you are operating in alow-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check.

10.5. Session disconnection

The first approach described above is to maintain a single | Sessi on for a whole business process thats spans
user think time. (For example, a servlet might keep an | Sessi on in the user's Ht t pSessi on.) For performance
reasons you should

1. committhel Transacti on and then
2. disconnect the ! Sessi on from the ADO.NET connection

before waiting for user activity. The method | Sessi on. Di sconnect () Will disconnect the session from the
ADO.NET connection and return the connection to the pool (unless you provided the connection).

| Sessi on. Reconnect () obtains a new connection (or you may supply one) and restarts the session. After re-
connection, to force a version check on data you aren't updating, you may call | Sessi on. Lock() on any objects
that might have been updated by another transaction. Y ou don't need to lock any data that you are updating.

Heres an example:

NHibernate 1.0.2 78

Transactions And Concurrency

| Sessi onFactory sessi ons;
| Li st foolist;
Bar bar;

| Session s = sessions. OpenSessi on();
| Transaction tx = null;

try
{

tx = s.Begi nTransaction())

fooList = s.Find(
"sel ect foo from Eg. Foo foo where foo.Date = current date"
/1 uses db2 date function

)

bar = new Bar ();
s. Save(bar);

tx. Commit();
catch (Exception)
{
if (tx !'= null) tx.Rollback();
s.d ose();
t hr ow;
}

s. Di sconnect () ;

Later on:

s. Reconnect () ;

try
{

tx = s.BeginTransaction();

bar. FooTabl e = new HashMap();
foreach (Foo foo in foolist)

s. Lock(foo, LockMde. Read); /lcheck that foo isn't stale
bar . FooTabl e. Put (foo. Name, foo);
}
tx. Commit();
catch (Exception)
{
if (tx !'= null) tx.Rollback();
t hr ow,
}
finally
s. O ose();
}

Y ou can see from this how the relationship between | Tr ansacti ons and | Sessi onS iS many-to-one, An I Ses-
si on represents a conversation between the application and the database. The | Transacti on breaks that con-
versation up into atomic units of work at the database level.

10.6. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. It's usually enough to specify an
isolation level for the ADO.NET connections and then simply let the database do all the work. However, ad-

NHibernate 1.0.2 79

Transactions And Concurrency

vanced users may sometimes wish to obtain exclusive pessimistic locks, or re-obtain locks at the start of a new
transaction.

NHibernate will always use the locking mechanism of the database, never lock objectsin memory!

The LockMode class defines the different lock levels that may be acquired by NHibernate. A lock is obtained by
the following mechanisms.

e LockMde. Wi t e isacquired automatically when NHibernate updates or inserts arow.

* LockMde. Upgr ade may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases
which support that syntax.
e LockMbde. Upgr adeNovai t may be acquired upon explicit user request using a SELECT ... FOR UPDATE

Nomal T under Oracle.

* LockMde. Read is acquired automatically when NHibernate reads data under Repeatable Read or Serializ-
ableisolation level. May be re-acquired by explicit user request.

* LockMde. None represents the absence of a lock. All objects switch to this lock mode at the end of an
| Transact i on. Objects associated with the session via a call to Updat e() Or SaveOr Updat e() also start out
in thislock mode.

The "explicit user request” is expressed in one of the following ways:

e Acadltol Session. Load(), specifying aLockMde.
e« Acdltol Session. Lock().
* Acaltol Query. Set LockMbde().

If I Sessi on. Load() is called with Upgr ade Or Upgr adeNoWai t , and the requested object was not yet loaded by
the session, the object isloaded using SELECT ... FOR UPDATE. If Load() is called for an abject that is already
loaded with aless restrictive lock than the one requested, NHibernate calls Lock() for that object.

| Sessi on. Lock() performs a version number check if the specified lock mode is Read, Upgrade Or Up-
gr adeNoWi t . (In the case of Upgr ade Or Upgr adeNoWai t , SELECT ... FOR UPDATE isused.)

If the database does not support the requested lock mode, NHibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

NHibernate 1.0.2 80

Chapter 11. HQL: The Hibernate Query Language

NHibernate is equiped with an extremely powerful query language that (quite intentionally) looks very much
like SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inherit-
ence, polymorphism and association.

11.1. Case Sensitivity

Queries are case-insensitive, except for names of .NET classes and properties. SO SeLeCT is the same as sELEct
isthe same as SELECT but Eg. FOOis not Eg. Foo and f oo. bar Set iSNot f oo. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in Java code.

11.2. The from clause

The simplest possible NHibernate query is of the form:

from Eg. Cat

which simply returns al instances of the class Eg. Cat .

Most of the time, you will need to assigh an alias, since you will want to refer to the cat in other parts of the
query.

from Eg. Cat as cat

This query assigns the dlias cat to Cat instances, so we could use that alias later in the query. The as keyword
is optional; we could also write:

from Eg. Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross' join.

from Fornul a, Paranet er
fromFornmula as form Parameter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with naming stand-
ardsfor local variables (eg. donesti cCat).

11.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using aj oi n.

from Eg. Cat as cat
inner join cat.Mate as mate
left outer join cat.Kittens as kitten

fromEg.Cat as cat left join cat. Mate.Kittens as kittens

NHibernate 1.0.2 81

HQL: The Hibernate Query Language

fromFornmula formfull join form Paraneter param

The supported join types are borrowed from ANSI SQL

® inner join

e Jeft outer join

* right outer join

e full join (notusualy useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

from Eg. Cat as cat
join cat.Mate as nate
left join cat.Kittens as kitten

In addition, a "fetch" join alows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections.

from Eg. Cat as cat
inner join fetch cat. Mate
left join fetch cat.Kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
wher e clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed viathe parent object.

Note that, in the current implementation, only one collection role may be fetched in a query (everything else
would be non-performant). Note also that the f et ch construct may not be used in queries called using Enuner -
abl e(). Finally, notethat ful | join fetchandright join fetch arenot meaningful.

11.4. The select clause

Thesel ect clause picks which objects and propertiesto return in the query result set. Consider:

sel ect mate
from Eg. Cat as cat
inner join cat.Mate as mate

The query will select mat es of other cat s. Actually, you may express this query more compactly as:

sel ect cat.Mate from Eg. Cat cat

You may even select collection elements, using the special el enent s function. The following query returns al
kittens of any cat.

sel ect elenments(cat.Kittens) from Eg. Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.Name from Eg. DonesticCat cat
where cat.Nanme like '"fri%

sel ect cust. Nanme. First Nanme from Custoner as cust

NHibernate 1.0.2 82

HQL: The Hibernate Query Language

Queries may return multiple objects and/or properties as an array of type obj ect []

sel ect nother, offspr, mate. Nanme
from Eg. Donesti cCat as not her
inner join nother.Mate as mate
left outer join nother.Kittens as offspr

or as an actual typesafe object

sel ect new Fami | y(nother, mate, offspr)
from Eg. Donesti cCat as not her

join nother.Mate as nate

left join nother.Kittens as of fspr

assuming that the class Fani | y has an appropriate constructor.

11.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

sel ect avg(cat.Wight), sun{cat.Wight), max(cat.Wight), count(cat)
from Eg. Cat cat

Collections may also appear inside aggregate functionsin the sel ect clause.

sel ect cat, count(elenents(cat.Kittens))
from Eg. Cat cat group by cat

The supported aggregate functions are

* avg(...), sun(...), mn(...), mx(...)

e count(*)

e count(...), count(distinct ...), count(all...)

Thedi stinct andal | keywords may be used and have the same semantics asin SQL.

sel ect distinct cat.Nane from Eg. Cat cat

sel ect count(distinct cat.Nanme), count(cat) from Eg. Cat cat

11.6. Polymorphic queries

A query like:

from Eg. Cat as cat

returns instances not only of cat, but also of subclasses like Dorrest i cCat . NHibernate queries may name any
NET class or interface in the f r omclause. The query will return instances of all persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

from System Obj ect o

Theinterface | Named might be implemented by various persistent classes:

NHibernate 1.0.2 83

HQL: The Hibernate Query Language

from Eg. Naned n, Eg. Naned m where n. Nane = m Name

Note that these last two queries will require more than one SQL SELECT. This means that the or der by clause
does not correctly order the whole result set.

11.7. The where clause

The wher e clause allows you to narrow the list of instances returned.

from Eg. Cat as cat where cat.Nanme='Fritz'

returns instances of cat named 'Fritz'.

sel ect foo
from Eg. Foo foo, Eg.Bar bar
where foo. StartDate = bar. Date

will return all instances of Foo for which there exists an instance of Bar with a Dat e property equal to the
St art Dat e property of the Foo. Compound path expressions make the wher e clause extremely powerful. Con-
sider:

from Eg. Cat cat where cat.Mate. Nane i s not null

This query tranglates to an SQL query with atable (inner) join. If you were to write something like

from Eg. Foo foo
where foo. Bar. Baz. Custoner. Address. City is not null

you would end up with aquery that would require four table joinsin SQL.
The = operator may be used to compare not only properties, but also instances:

from Eg. Cat cat, Eg.Cat rival where cat.Mate = rival.Mte
sel ect cat, mate

fromEg. Cat cat, Eg.Cat mate
where cat.Mate = nate

The special property (lowercase) i d may be used to reference the unique identifier of an object. (You may aso
use its property name.)
from Eg. Cat as cat where cat.id = 123

from Eg. Cat as cat where cat.Mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier consisting of
Count ry and Medi car eNunber .

from Bank. Per son person
where person.id.Country = 'AU
and person.id. Medi careNunber = 123456

f rom Bank. Account account
where account. Oaner.id. Country = ' AU
and account. Omer.id. Medi careNunber = 123456

NHibernate 1.0.2 84

HQL: The Hibernate Query Language

Once again, the second query requires no table join.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be trandlated to its discriminator value.

from Eg. Cat cat where cat.class = Eg. Donesti cCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that endsin a property of component type (as opposed to a property of a
component). For example, if st ore. Oaner isan entity with a component Addr ess

store. Omer. Address. City /'l okay
st ore. Omer . Addr ess /1 error!

An "any" type has the specia propertiesid and cl ass, alowing us to express a join in the following way
(where Audi t Log. | t emis aproperty mapped with <any>).

from Eg. AuditLog | og, Eg.Paynent paynent
where |l og.ltemclass = 'Eg. Paynent, Eg, Version=...' and log.ltemid = paynent.id

Notice that | og. I tem cl ass and paynent . cl ass would refer to the values of completely different database
columnsin the above query.

11.8. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could writein SQL.:

e mathematical operators+, -, *, /

* binary comparison operators=, >=, <=, <>, !=, like
* logical operationsand, or, not

e string concatenation ||

e SQL scaar functions like upper () and | ower ()

e Parentheses () indicate grouping

* in,between,is null

e positiona parameters ?

¢ named parameters: nane, : start_date, : x1

e SQL literals' foo', 69, ' 1970-01-01 10: 00: 01. 0'
* Enumeration values and constants Eg. Col or . Tabby

i n and bet ween may be used as follows:

from Eg. Donesti cCat cat where cat.Nane between 'A and 'B

from Eg. DonesticCat cat where cat.Nane in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from Eg. Donesti cCat cat where cat.Nane not between 'A and 'B'

from Eg. Domesti cCat cat where cat.Name not in ('Foo', 'Bar', 'Baz')

Likewise,is null andis not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in NHibernate configuration:

NHibernate 1.0.2 85

HQL: The Hibernate Query Language

<property nane="hi bernate. query. substitutions">true 1, fal se 0</property>

Thiswill replace the keywordst rue and f al se with theliterals 1 and o in the trandated SQL from thisHQL :

fromEg. Cat cat where cat.Alive = true

Y ou may test the size of a collection with the special property si ze, or the specia si ze() function.

from Eg. Cat cat where cat.Kittens.size > 0
from Eg. Cat cat where size(cat.Kittens) > 0
For indexed collections, you may refer to the minimum and maximum indices using ni ni ndex and max! ndex.

Similarly, you may refer to the minimum and maximum elements of a collection of basic type using ni nEl e-
ment and naxEl ement .

from Cal endar cal where cal. Holidays. maxEl ement > current date

There are also functional forms (which, unlike the constructs above, are not case sensitive):

from Order order where maxi ndex(order.|tenms) > 100

from Order order where m nel enent (order.|ltenms) > 10000

The SQL functionsany, sone, all, exists, in aresupportedwhen passed the element or index set of a col-
lection (el enent s and i ndi ces functions) or the result of a subquery (see below).

sel ect nother from Eg. Cat as nother, Eg.Cat as kit
where kit in el ements(nother.Kittens)

sel ect p from Eg. NaneLi st |ist, Eg.Person p
where p. Nane = sone el ements(list. Nanes)

from Eg. Cat cat where exists el enents(cat.Kittens)
from Eg. Pl ayer p where 3 > all el enments(p. Scores)

from Eg. Show show where 'fizard' in indices(show Acts)

Note that these constructs - si ze, el enent s, i ndi ces, ni nl ndex, maxl ndex, mi nEl enent, naxEl enent - have
certain usage restrictions:

¢ inawhere clause: only for databases with subselects
* inasel ect clause: only el ement s and i ndi ces make sense

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in awhere clause only):

from Order order where order.ltens[0].id = 1234

sel ect person from Person person, Cal endar cal endar

wher e cal endar. Hol i days[' nati onal day'] = person.BirthDay
and person. Nationality. Cal endar = cal endar

select itemfromlitemitem O-der order
where order.ltens[order.Deliveredltem ndices[0]] = itemand order.id = 11

select itemfromltemitem Order order
where order.|tens[maxindex(order.itens)] = itemand order.id = 11

The expressioninside[] may even be an arithmetic expression.

NHibernate 1.0.2 86

HQL: The Hibernate Query Language

select itemfromlitemitem O der order
where order.|tens[size(order.ltems) - 1] = item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or collection of
values.

select item index(item) from Order order
join order.ltens item
where index(itenm) < 5

Scalar SQL functions supported by the underlying database may be used

from Eg. Donesti cCat cat where upper(cat.Nanme) |ike 'FRI %

If you are not yet convinced by al this, think how much longer and less readable the following query would be
in SQL:

sel ect cust
from Product prod,
Store store
i nner join store.Custoners cust
where prod. Name = 'w dget’
and store.Location.Nanme in (' Ml bourne', 'Sydney')
and prod = all elenments(cust. CurrentO der. Lineltens)

Hint: something like

SELECT cust.nanme, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,
stores store,
| ocations |oc,
store_custoners sc,
product prod
VWHERE prod. nanme = 'w dget'
AND store.loc_id = loc.id
AND | oc. nane IN (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust _id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_itens item orders o
WHERE itemorder_id = o.id
AND cust.current _order = o.id

11.9. The order by clause

The list returned by a query may be ordered by any property of areturned class or components:

from Eg. Donmesti cCat cat
order by cat.Nane asc, cat.Wight desc, cat.Birthdate

The optional asc or desc indicate ascending or descending order respectively.

11.10. The group by clause

A query that returns aggregate values may be grouped by any property of areturned class or components:

NHibernate 1.0.2 87

HQL: The Hibernate Query Language

sel ect cat. Col or, sum(cat.Wight), count(cat)
from Eg. Cat cat
group by cat. Col or

sel ect foo.id, avg(el ements(foo.Nanes)), max(indices(foo.Nanes))

from Eg. Foo foo
group by foo.id

Note: You may use the el enent s and i ndi ces constructs inside a select clause, even on databases with no

subselects.
A havi ng clauseisalso allowed.

sel ect cat.color, sum(cat.Wight), count(cat)
from Eg. Cat cat
group by cat. Col or

havi ng cat. Col or in (Eg.Col or. Tabby, Eg. Col or. Bl ack)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if supported by the un-

derlying database (ie. not in MySQL).

sel ect cat
from Eg. Cat cat
join cat.Kittens kitten
group by cat
havi ng avg(kitten. Wi ght) > 100

order by count(kitten) asc, sun(kitten.Wight) desc

Note that neither the gr oup by clause nor the or der by clause may contain arithmetic expressions.

11.11. Subqueries

For databases that support subselects, NHibernate supports subqueries within queries. A subquery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries (subqueries that

refer to an aliasin the outer query) are allowed.

from Eg. Cat as fatcat
where fatcat.Wight > (
sel ect avg(cat.Wight) from Eg. DonesticCat cat

)

from Eg. DonesticCat as cat
where cat. Name = sonme (
sel ect nane. Ni ckNane from Eg. Nane as nane

)

from Eg. Cat as cat
where not exists (
fromeg. Cat as mate where mate. Mate = cat

)

from Eg. DonesticCat as cat
where cat.Nanme not in (

sel ect nanme. Ni ckNane from Eg. Name as nane
)

11.12. HQL examples

NHibernate queries can be quite powerful and complex. In fact, the power of the query language is one of

NHibernate 1.0.2

88

HQL: The Hibernate Query Language

NHibernate's main selling points. Here are some example queries very similar to queries that | used on a recent
project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid orders for a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LI NE, PRODUCT, CATALOG
and PRI CE tables has four inner joins and an (uncorrel ated) subselect.

sel ect order.id, sun(price.Arount), count(item
from Order as order
join order.Lineltens as item
join item Product as product,
Cat al og as cat al og
join catal og.Prices as price
where order.Paid = fal se
and order. Custonmer = :custoner
and price. Product = product
and catal og. EffectiveDate < sysdate
and catal og. EffectiveDate >= al |l (
sel ect cat.EffectiveDate
from Catal og as cat
where cat. EffectiveDate < sysdate
)
group by order
havi ng sun(price. Amount) > :m nArmount
order by sun(price. Anount) desc

What amonster! Actually, inreal life, I'm not very keen on subqueries, so my query was really more like this:

sel ect order.id, sun(price.anmount), count(item
from Order as order

join order.Lineltens as item

join item Product as product,

Cat al og as cat al og

join catal og.Prices as price
where order.Paid = fal se

and order. Custonmer = :custoner
and price. Product = product
and catal og = :current Cat al og

group by order
havi ng sum(price. Amount) > :m nAmount
order by sum(price. Amount) desc

The next query counts the number of payments in each status, excluding all paymentsin the Awai t i ngAppr oval
status where the most recent status change was made by the current user. It trandates to an SQL query with two
inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAYMENT_STATUS CHANGE
tables.

sel ect count (paynent), status. Nane
from Paynent as paynent
join paynent. Current Status as status
join payment. St at usChanges as st at usChange
wher e paynent. St at us. Nanme <> Paynent St at us. Awai t i ngAppr oval
or (
statusChange. TineStanp = (
sel ect max(change. Ti meSt anp)
f rom Paynent St at usChange change
wher e change. Payment = paynent

)

and st at usChange. User <> :currentUser

)
group by status.Nane, status. SortOrder

order by status. Sort O der

NHibernate 1.0.2 89

HQL: The Hibernate Query Language

If 1 would have mapped the st at usChanges collection as a lit, instead of a set, the query would have been
much simpler to write.

sel ect count (paynent), status. Nane
from Paynent as paynent
join payment. Current Status as status
wher e paynent. Status. Nane <> Paynent St at us. Awai ti ngAppr oval
or paynent. St at usChanges[nmaxl| ndex(paynment. St at usChanges)].User <> :currentUser
group by status.Nane, status. SortOrder
order by status. Sort O der

The next query uses the MS SQL Server i s\ul | () function to return al the accounts and unpaid payments for
the organization to which the current user belongs. It trandlates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and
ORG_USER tables.

sel ect account, paynent
from Account as account
| eft outer join account.Paynents as paynent
where :currentUser in el enents(account. Hol der. Users)
and Payment St at us. Unpaid = i sNul | (paynent. Current St at us. Nane, Paynent St at us. Unpai d)
order by account. Type. Sort Order, account. Account Nunber, paymnent. DueDat e

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynent
from Account as account
join account. Hol der. Users as user
|l eft outer join account.Paynents as payment
where :currentUser = user
and Payment St atus. Unpaid = i sNul | (paynent. Current St at us. Nanme, Paynent St at us. Unpai d)
order by account. Type. Sort Order, account. Account Nunber, paynent. DueDat e

11.13. Tips & Tricks

Y ou can count the number of query results without actually returning them:

| Enuner abl e count En = sessi on. Enuner abl e("sel ect count(*) from....");
count En. MoveNext () ;
int count = (int) countEn.Current;

To order aresult by the size of a collection, use the following query:

sel ect usr.id, usr.Nanme
from User as usr
| eft join usr.Messages as nsg
group by usr.id, usr.Nane
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.Messages) >= 1
If your database doesn't support subselects, use the following query:

sel ect usr.id, usr.Nane
from User usr
join usr.Messages nsg

NHibernate 1.0.2 90

HQL: The Hibernate Query Language

group by usr.id, usr.Nanme
havi ng count(nsg) >= 1

Asthis solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

sel ect usr.id, usr.Nane
from User as usr
| eft join usr.Messages as nsg
group by usr.id, usr.Nane
havi ng count(nsg) = 0

Properties of an object can be bound to named query parameters:

lQuery q = s.CreateQuery("fromfoo in class Foo where foo. Name=: Nane and foo. Si ze=: Si ze");
g. Set Properti es(fooBean); // fooBean has properties Nane and Size
IList foos = q.List();

Coallections are pageable by using the | Query interface with afilter:

| Query q = s.CreateFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PageSi ze) ;

g. set Fi rst Resul t (PageSi ze * pageNunber);

I List page = q.List();

Collection elements may be ordered or grouped using a query filter:

I Col I ection orderedCollection = s.Filter(collection, "order by this.Anmunt");
ICollection counts = s.Filter(collection, "select this.Type, count(this) group by this.Type"

NHibernate 1.0.2 91

Chapter 12. Criteria Queries

NHibernate now features an intuitive, extensible criteria query API. For now, this API isless powerful than the
more mature HQL query facilities. In particular, criteria queries do not support projection or aggregation.

12.1. Creating an I Criteri a instance

The interface NHi bernate. | Cri t eri a represents a query against a particular persistent class. The Session isa
factory for 1 Criteri a instances.

ICriteria crit = sess.CreateCriteria(typeof(Cat));
crit. Set MaxResul t s(50);
List cats = crit.List();

12.2. Narrowing the result set

An individua query criterion is an instance of the interface NHi ber nat e. Expressi on. I Criterion. The class
NHi ber nat e. Expr essi on. Expr essi on defines factory methods for obtaining certain built-in 1 cri t eri on types.

IList cats = sess.CreateCriteria(typeof(Cat))
. Add(Expression. Li ke("Name", "Fritz%))
. Add(Expression. Between(" Wi ght", m nWeight, maxWight))
.List();

Expressions may be grouped logically.

IList cats = sess.CreateCriteria(typeof(Cat))
. Add(Expression.Li ke("Name", "Fritz%))
. Add(Expression. O (
Expressi on. Eq("Age", 0),
Expression. | sNul | ("Age")

))
.List();

IList cats = sess.CreateCriteria(typeof(Cat))
.Add(Expression.In("Name", new String[] { "Fritz", "lzi", "Pk" }))
. Add(Expression. Di sjunction()
. Add(Expression.|sNull ("Age"))

. Add(Expression. Eq("Age", 0))

. Add(Expression. Eq("Age", 1))

. Add(Expression. Eq("Age", 2))
))
.List();

There are quite a range of built-in criterion types (Expr essi on subclasses), but one that is especially useful lets
you specify SQL directly.

/]l Create a string paraneter for the Sql String bel ow
Par anet er paranName = new Par anet er ("soneNane", new StringSqgl Type());

IList cats = sess.CreateCriteria(typeof(Cat))
. Add(Expression. Sqgl (
new Sql String(new object[] {
"l ower ({alias}.Nanme) like |ower(",
par aniNane,

).
"Fritzu,

NHibernate 1.0.2 92

Criteria Queries

NH bernateUtil.String)
.List();

The{al i as} placeholder with be replaced by the row alias of the queried entity.

12.3. Ordering the results

Y ou may order the results using NHi ber nat e. Expr essi on. Or der .

IList cats = sess.CreateCriteria(typeof(Cat))
. Add(Expression. Li ke("Nane", "F%)
. AddOrder (Order. Asc(" Nane"))
. AddOrder (Order. Desc("Age"))
. Set MaxResul t s(50)
.List();

12.4. Associations

Y ou may easily specify constraints upon related entities by navigating associations using Creat eCri teri a() .

IList cats = sess.CreateCriteria(typeof(Cat))
. Add(Expression. Li ke("Nanme", "F%)
.CreateCriteria("Kittens")

. Add(Expression. Li ke("Nanme", "F%))
.List();

note that the second Creat eCriteria() returns a new instance of |1 Cri teri a, which refers to the elements of
theki t t ens collection.

The following, alternate form is useful in certain circumstances.

IList cats = sess.CreateCriteria(typeof(Cat))
.CreateAlias("Kittens", "kt")
.CreateAlias("Mate", "nt")
. Add(Expression. EqProperty("kt.Name", "nt.Nane"))
.List();

(CreateAl i as() doesnot createanew instanceof I riteria.)

Note that the kittens collections held by the cat instances returned by the previous two queries are not pre-
filtered by the criterial If you wish to retrieve just the kittens that match the criteria, you must use Set Resul t -
Transforner(Criterialtil.AliasToEntityMp).

IList cats = sess.CreateCriteria(typeof(Cat))
.CreateCriteria("Kittens", "kt")
. Add(Expression. Eq("Nanme", "F%))
.SetResul t Transfornmer(CriteriaUtil.AliasToEntityMap)

.List();

foreach (IDictionary map in cats)

{
Cat cat = (Cat) map[Criterialtil.RootAlias];
Cat kitten = (Cat) map["kt"];

}

12.5. Dynamic association fetching

NHibernate 1.0.2 93

Criteria Queries

Y ou may specify association fetching semantics at runtime using Set Fet chMode() .

IList cats = sess.CreateCriteria(typeof(Cat))
. Add(Expression. Li ke("Name", "Fritz%))
. Set Fet chMbde(" Mat e", Fet chMbde. Eager)
. Set Fet chMbde("Ki ttens", FetchMde. Eager)
.List();

This query will fetch both vat e and ki t t ens by outer join.

12.6. Example queries

The class NHi ber nat e. Expr essi on. Exanpl e alows you to construct a query criterion from a given instance.

Cat cat = new Cat();

cat.Sex = 'F';

cat. Col or = Col or. Bl ack;

List results = session.CreateCriteria(typeof(Cat))
. Add(Exanpl e.Create(cat))
.List();

Version properties, identifiers and associations are ignored. By default, null valued properties and properties
which return an empty string from the call to ToSt ri ng() are excluded.

Y ou can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. Creat e(cat)

. Excl udeZer oes() [/ exclude null or zero val ued properties

. Excl udeProperty("Col or") //exclude the property naned "col or"

. I gnoreCase() /I perform case insensitive string conparisons
. Enabl eLi ke(); /luse like for string conparisons

IList results = session.CreateCriteria(typeof(Cat))
. Add(exanpl e)
.List();

Y ou can even use examples to place criteria upon associated objects.

IList results = session.CreateCriteria(typeof(Cat))
. Add(Exanpl e.Create(cat))
.CreateCriteria("Mate")

. Add(Exanple.Create(cat.Mte))
.List();

NHibernate 1.0.2 94

Chapter 13. Native SQL Queries

You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as the CONNECT keyword in Oracle. This also allows for a cleaner migration
path from adirect SQL/ADO.NET based application to NHibernate.

13.1. Creating a SQL based I Query

SQL queries are exposed through the same | Query interface, just like ordinary HQL queries. The only differ-
enceisthe use of | Sessi on. Creat eSQLQuery() .

| Query sql Query = sess. CreateSQ. Query("select {cat.*} fromcats {cat}", "cat", typeof(Cat));
sql Query. Set MaxResul t s(50) ;
IList cats = sql Query. List();

The three parameters provided to Cr eat eSQLQuer y() are:

» the SQL query string
* atablealiasname
» the persistent class returned by the query

The alias name is used inside the SQL string to refer to the properties of the mapped class (in this case cat).
Y ou may retrieve multiple objects per row by supplying ast ri ng array of alias names and a Syst em Type array
of corresponding classes.

13.2. Alias and property references

The{cat.*} notation used above is a shorthand for "all properties’. Y ou may even list the properties explicity,
but you must let NHibernate provide SQL column aliases for each property. The placeholders for these column
aliases are the property name qualified by the table aias. In the following example, we retrieve cat s from a dif-
ferent table (cat _I og) to the one declared in the mapping metadata. Notice that we may even use the property
aliasesin the where clause.

string sql = "select cat.originalld as {cat.ld}, "
+ " cat.mateid as {cat.Mate}, cat.sex as {cat.Sex}, "
+ " cat.weight*10 as {cat.Wight}, cat.name as {cat.Nane}"
+ " fromcat _|og cat where {cat.Mate} = :catld"

ILi st | oggedCats = sess. CreateSQ.Query(sqgl, "cat", typeof(Cat))
.Setlnt64("catld", catld)
.List();

Note: if you list each property explicitly, you must include all properties of the class and its subclasses!

13.3. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query.

I Li st people = sess. Get NanedQuery (" nySql Query")

NHibernate 1.0.2 95

Native SQL Queries

. Set MaxResul t s(50)
.List();

<sql - query name="nySql Query">
<return alias="person" class="Eg.Person, Eg"/>
SELECT {person}. NAME AS { person. Nane},
{person}. AGE AS {person. Age},
{person}. SEX AS {person. Sex}
FROM PERSON { person} WHERE {person}. NAME LI KE ' Hi ber %
</ sql - query>

NHibernate 1.0.2

96

Chapter 14. Improving performance

14.1. Understanding Collection performance

We've dready spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

14.1.1. Taxonomy

NHibernate defines three basic kinds of collections:

» collections of values
¢ Oneto many associations
e many to many associations

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relationa structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by NHibernate to
update or delete collection rows. This suggests the following classification:

¢ indexed collections

e sets
e bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <i ndex> columns.
In this case collection updates are usually extremely efficient - the primary key may be efficiently indexed and
aparticular row may be efficiently located when NHibernate tries to update or deleteit.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare al columns as not -
nul 1 ="true".)

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. NHibernate has no way of distinguishing between duplicate rows. NHibernate resolves this
problem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This
might be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It till reflects how NHibernate "locates' in-
dividual rows of the collection.)

14.1.2. Lists, maps and sets are the most efficient collections to update

NHibernate 1.0.2 97

Improving performance

From the discussion above, it should be clear that indexed collections and (usually) sets alow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of an | Set, NHibernate doesn't ever UPDATE a row when an
element is "changed". Changes to an 1 set always work via | NSERT and DELETE (of individual rows). Once
again, this consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and sets are the most performant
collection types. (With the caveat that a set might be less efficient for some collections of values.)

Sets are expected to be the most common kind of collection in NHibernate applications.

There is an undocumented feature in this release of NHibernate. The <i dbag> mapping implements bag se-
mantics for a collection of values or a many to many association and is more efficient that any other style of
collection in this case!

14.1.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and aso lists) are much more per-
formant than sets. For a collection with i nver se="true" (the standard bidirectiona one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
This is because I Li st. Add() or I List. AddRange() must always succeed for a bag or I Li st (unlike a Set).
This can make the following common code much faster.

Parent p = (Parent) sess.Load(typeof(Parent), id);
Child ¢ = new Child();
c.Parent = p;
p. Chil dren. Add(c); //no need to fetch the collection!
sess. Fl ush();

14.1.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. NHibernate isn't completly
stupid, so it knows not to do that in the case of an newly-empty collection (if you caled i st. d ear (), for ex-
ample). In this case, NHibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. NHibernate will
issue one | NSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed

« delete eighteen rows one by one and then insert three rows
« remove the whole collection (in one SQL DELETE) and insert al five current elements (one by one)

NHibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for NHibernate to be that smart; such behaviour might confuse database triggers, etc.)

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be

NHibernate 1.0.2 98

Improving performance

very useful and powerful from timeto time.

We have already shown how you can use lazy initialization for persistent collections in the chapter about col-
lection mappings. A similar effect is achievable for ordinary object references, using proxies. We have also
mentioned how NHibernate caches persistent objects at the level of an | Sessi on. More aggressive caching
strategies may be configured upon a class-by-class basis.

In the next section, we show you how to use these features, which may be used to achieve much higher per-
formance, where necessary.

14.2. Proxies for Lazy Initialization

NHibernate implements lazy initializing proxies for persistent objects using runtime IL generation (via the ex-
cellent Castle.DynamicProxy library).

The mapping file declares a class or interface to use as the proxy interface for that class. The recommended ap-
proach is to specify the classitself:

<cl ass nanme="Eg. Order" proxy="Eg. O der">

The runtime type of the proxies will be a subclass of o der. Note that the proxied class must implement a de-
fault constructor with at least protected visibility and that all methods, properties and events of the class should
be declared vi rt ual .

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<cl ass name="Eg. Cat" proxy="Eg. Cat">

</ subcl ass>
</ cl ass>

Firstly, instances of cat will never be castable to Donest i cCat , even if the underlying instance is an instance of
Donesti cCat .

Cat cat = (Cat) session.Load(typeof(Cat), id); // instantiate a proxy (does not hit the db)
if (cat.lsDonesticCat) // hit the db to initialize the proxy

{
DonesticCat dc = (DonesticCat) cat; /] Error!

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.Load(typeof(Cat), id); /1 instantiate a Cat proxy
DonesticCat dc =

(Donesti cCat) session. Load(typeof (DonmesticCat), id); // required new DonesticCat proxy!
Consol e. Qut. Wi telLi ne(cat ==dc); /1 false

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

cat. Weight = 11.0; // hit the db to initialize the proxy
Consol e. Qut. WiteLine(dc.Wight); // 11.0

NHibernate 1.0.2 99

Improving performance

Third, you may not use aproxy for aseal ed class or a class with any seal ed or non-vi rt ual methods.

Finally, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy class is an actual subclass of the
persistent class.

These problems are all due to fundamental limitations in .NET single inheritance model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
Y ou should specify these interfaces in the mapping file. eg.

<cl ass name="Eg. Cat" proxy="Eg.|Cat">

</ subcl ass>
</ cl ass>

where cat implementsthe interface | cat and Donmest i cCat implements the interface | Donest i cCat . Then prox-
ies for instances of cat and Donest i cCat may be returned by Load() or Enuner abl e() . (Note that Fi nd() does
not return proxies.)

ICat cat = (I Cat) session.Load(typeof(Cat), catid);

| Enuner abl e en = session. Enunerabl e("fromcat in class Eg. Cat where cat.Nane='fritz'");
en. MoveNext () ;

ICat fritz = (1Cat) en.Current;

Relationships are also lazily initialized. This means you must declare any propertiesto be of type cat , not cat .
Certain operations do not require proxy initialization

e Equal s(), if the persistent class does not override Equal s()
e GetHashCode(), if the persistent class does not override Get HashCode()
e Theidentifier getter method (if the class does not use a custom accessor for the identifier property)

NHibernate will detect persistent classes that override Equal s() Or Get HashCode() .
Exceptions that occur whileinitializing a proxy are wrapped in alLazyl ni ti al i zat i onExcepti on.

Sometimes we need to ensure that a proxy or collection is initialized before closing the | Sessi on. Of course,
we can alway force initialization by calling cat . Sex Or cat . Ki t t ens. Count , for example. But that is confusing
to readers of the code and is not convenient for generic code. The static methods NH ber nat eUt -
il.Initialize() and NHi bernateUtil.Islnitialized() provide the application with a convenient way of
working with lazyily initialized collections or proxies. NHi bernateUtil. I nitialize(cat) will force the ini-
tialization of aproxy, cat, aslong asits| Sessi on isstill open. NHi bernateUtil . Initialize(cat.Kittens)
has asimilar effect for the collection of kittens.

14.3. Using batch fetching

NHibernate can make efficient use of batch fetching, that is, NHibernate can load several uninitialized proxies
if one proxy is accessed. Batch fetching is an optimization for the lazy loading strategy. There are two ways
you can tune batch fetching: on the class and the collection level.

Batch fetching for classeg/entities is easier to understand. Imagine you have the following situation at runtime;
You have 25 cat instances loaded in an | Sessi on, each cat has a reference to its Oaner, aPer son. The Per son
class is mapped with a proxy, 1 azy="true". If you now iterate through all cats and get the owner of each,

NHibernate 1.0.2 100

Improving performance

NHibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. Y ou can tune this be-
havior by specifying abat ch- si ze in the mapping of Per son:

<cl ass nanme="Person" |azy="true" batch-size="10">...</cl ass>

NHibernate will now execute only three queries, the pattern is 10, 10, 5. You can see that batch fetching is a
blind guess, as far as performance optimization goes, it depends on the number of unitilized proxiesin a partic-
ular | Sessi on.

You may also enable batch fetching of collections. For example, if each Person has alazy collection of cat s,
and 10 persons are currently loaded in the | Sesssi on, iterating through all persons will generate 10 SELECTS,
one for every read of Person. Cat s. If you enable batch fetching for the cat s collection in the mapping of Per -
son, NHibernate can pre-fetch collections:

<cl ass name="Person" >
<set nanme="Cats" |azy="true" batch-size="3">

</ set >
</ cl ass>

With abat ch- si ze of 3, NHibernate will load 3, 3, 3, 1 collectionsin 4 SELECTS. Again, the value of the attrib-
ute depends on the expected number of uninitialized collectionsin a particular | Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typica hill-
of-materials pattern.

14.4. The Second Level Cache

A NHibernate | Sessi on is a transaction-level cache of persistent data. It is possible to configure a cluster or
process-level (1 Sessi onFact or y-level) cache on a class-by-class and collection-by-collection basis. You may
even plug in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by
another application (though they may be configured to regularly expire cached data). In NHibernate 1.0 second
level cache does not work correctly in combination with distributed transactions.

By default, NHibernate uses HashtableCache for process-level caching. You may choose a different imple-
mentation by specifying the name of a class that implements NHi ber nat e. Cache. | CachePr ovi der using the
property hi ber nat e. cache. provi der_cl ass.

Table 14.1. Cache Providers

Cache Provider class Type Cluster Safe Query Cache
Supported

Hashtable NHi ber n- memory yes

(notintended ate. Cache. Hasht abl eCachePr ovi der

for produc-

tion use)

ASP.NET NHi ber n- memory yes

Cache at e. Caches. SysCache. SysCachePr ovi der,

(System.Web. NHi ber nat e. Caches. SysCache

Cache)

Prevalence NHi ber n- memory, disk yes

Cache ate. Caches. Preval ence. Preval enceCacheP

NHibernate 1.0.2 101

Improving performance

Cache Provider class Type Cluster Safe | Query Cache
Supported

rovi der, NHi bernate. Caches. Preval ence

14.4.1. Cache mappings

The <cache> element of a class or collection mapping has the following form:

<cache
usage="read-wite| nonstrict-read-wite|read-only" (1)
/>

(1) usage specifiesthe caching strategy: read-write, nonstrict-read-wite O read-only

Alternatively (preferrably?), you may specify <cl ass- cache> and <col | ecti on- cache> elements in hi ber n-
ate.cfg. xm.

The usage attribute specifies a cache concurrency strategy.

14.4.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, aread-onl y cache may be
used. Thisisthe simplest and best performing strategy. Its even perfectly safe for usein acluster.

<cl ass nanme="Eg. | nmut abl e" nut abl e="f al se">
<cache usage="read-onl y"/>

</ cl ass>

14.4.3. Strategy: read/write

If the application needs to update data, aread-wite cache might be appropriate. This cache strategy should
never be used if seriaizable transaction isolation level is required. If you wish to use this strategy in a cluster,
you should ensure that the underlying cache implementation supports locking. The built-in cache providers do
not.

<cl ass nane="eg.Cat" >
<cache usage="read-write"/>

<set name="kittens" ... >
<cache usage="read-write"/>

</ set >
</ cl ass>

14.4.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, anonstri ct -
read-wr i t e cache might be appropriate.

The following table shows which providers are compatible with which concurrency strategies.

NHibernate 1.0.2 102

Improving performance

Table 14.2. Cache Concurrency Strategy Support

Cache read-only nonstrict- read-write
read-write

Hashtable (notin- | yes yes yes

tended for produc-

tion use)

SysCache yes yes yes

PrevalenceCache yes yes yes

Refer to Chapter 20, NHiber nate.Caches for more details.

14.5. Managing the |1 sessi on Cache

Whenever you pass an object to Save(), Updat e() Or SaveOr Updat e() and whenever you retrieve an object us-
ing Load(), Find(), Enunerabl e(), Or Filter(), that object is added to the internal cache of the I Sessi on.
When Fl ush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, the Evi ct () method may be used to remove the object and its collections from the cache.

| Enuner abl e cats = sess. Enunerabl e("from Eg. Cat as cat"); //a huge result set
foreach(Cat cat in cats)

{
DoSonet hi ngW t hACat (cat) ;
sess. Evict(cat);

}

NHibernate will evict associated entities automaticaly if the association is mapped with cascade="al 1" or
cascade="al | - del et e- or phan".

The| Sessi on aso provides aCont ai ns() method to determineif an instance belongs to the session cache.
To completely evict all objects from the session cache, call | Sessi on. d ear ()

For the second-level cache, there are methods defined on | Sessi onFact ory for evicting the cached state of an
instance, entire class, collection instance or entire collection role,

14.6. The Query Cache

Query result sets may also be cached. Thisis only useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it by setting the property hibern-
ate. cache. use_query_cache=t rue. This causes the creation of two cache regions - one holding cached query
result sets (NHi ber nat e. Cache. | Quer yCache), the other holding timestamps of most recent updates to queried
tables (NHi ber nat e. Cache. Updat eTi mest anpsCache). Note that the query cache does not cache the state of any
entities in the result set; it caches only identifier values and results of value type. So the query cache is usualy
used in conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
| Query. Set Cacheabl e(true). This call allows the query to look for existing cache results or add its results to

NHibernate 1.0.2 103

Improving performance

the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for aparticular query by calling | Query. Set CacheRegi on() .

I Li st blogs = sess. CreateQuery("from Bl og bl og where bl og. Bl ogger = : bl ogger")
.Set Entity("bl ogger", bl ogger)
. Set MaxResul t s(15)
. Set Cacheabl e(true)
. Set CacheRegi on("f ront pages")
.List();

If the query should force arefresh of its query cache region, you may call | Query. Set For ceCacheRef resh() to
true. Thisis particularly useful in cases where underlying data may have been updated via a seperate process
(i.e., not modified through NHibernate) and allows the application to selectively refresh the query cache regions
based on its knowledge of those events. This is an alternative to eviction of a query cache region. If you need
fine-grained refresh control for many queries, use this function instead of a new region for each query.

NHibernate 1.0.2 104

Chapter 15. Toolset Guide

Roundtrip engineering with NHibernate is possible using a set of commandline tools maintained as part of the
NHibernate project, along with NHibernate support built into various code generation tools (MyGeneration,
CodeSmith, ObjectMapper, AndroMDA).

The NHibernate main package comes bundled with the most important tool (it can even be used from "inside"
NHibernate on-the-fly):

» DDL schema generation from a mapping file (aka SchemaExpor t , hbn2ddl)

Other tools directly provided by the NHibernate project are delivered with a separate package, NHibernateCon-
trib. This package includes tools for the following tasks:

e C# source generation from a mapping file (akahbn2net)

* mapping file generation from .NET classes marked with attributes (NH ber nat e. Mappi ng. At tri but es, Of
NHMA for short)

Third party tools with NHibernate support are:

¢ CodeSmith, MyGeneration, and ObjectMapper (mapping file generation from an existing database schema)

¢« AndroMDA (MDA (Model-Driven Architecture) approach generating code for persistent classes from
UML diagrams and their XML/XMI representation)

These 3rd party tools are not documented in this reference. Please refer to the NHibernate website for up-
to-date information.

15.1. Schema Generation

The generated schema includes referential integrity constraints (primary and foreign keys) for entity and collec-
tion tables. Tables and sequences are also created for mapped identifier generators.

Y ou must specify aSQL Di al ect viathehi ber nat e. di al ect property when using thistool.

15.1.1. Customizing the schema

Many NHibernate mapping elements define an optional attribute named | engt h. You may set the length of a
column with this attribute. (Or, for numeric/decimal data types, the precision.)

Some tags also accept a not - nul | attribute (for generating a NOT NULL constraint on table columns) and a
uni que attribute (for generating UNI QUE constraint on table columns).

Some tags accept an i ndex attribute for specifying the name of an index for that column. A uni que- key attrib-
ute can be used to group columns in a single unit key constraint. Currently, the specified value of the uni que-
key attribute is not used to name the constraint, only to group the columnsin the mapping file.

Examples:

<property nane="Foo" type="String" |ength="64" not-null="true"/>

NHibernate 1.0.2 105

Toolset Guide

<many-t o- one nanme="Bar" foreign-key="fk _foo_bar" not-null="true"/>

<el enent col um="seri al _nunber" type="Int64" not-null="true" uni que="true"/>

Alternatively, these elements al so accept a child <col um> element. Thisis particularly useful for multi-column
types:

<property name="Foo" type="String">
<col um nane="fo00" | ength="64" not-null="true" sql-type="text"/>
</ property>

<property name="Bar" type="M. Custonilypes. Mul ti Col umType, M. Custonilypes"/>

<col um nane="fee" not-null="true" index="bar _idx"/>
<col um nane="fi" not-null="true" index="bar_idx"/>
<col um nanme="fo" not-null="true" index="bar _idx"/>

</ pr operty>

Thesql -t ype attribute alows the user to override the default mapping of NHibernate type to SQL datatype.
The check attribute allows you to specify a check constraint.

<property nanme="Foo" type="Int32">
<col um nane="foo" check="foo > 10"/>
</ property>
<cl ass nane="Foo" tabl e="foos" check="bar < 100.0">

<property name="Bar" type="Single"/>
</ cl ass>

Table 15.1. Summary

Attribute Values I nter pretation

l ength number column length/decimal precision

not - nul | true| fal se specfies that the column should be non-nullable

uni que true| fal se specifies that the column should have a unique constraint

i ndex i ndex_name specifies the name of a (multi-column) index

uni que- key uni que_key_nane specifies the name of a multi-column unique constraint

f orei gn- key forei gn_key_nane specifies the name of the foreign key constraint generated
for an association, use it on <one-to-one>, <many-to-one>,
<key>, and <many-to-many> mapping elements. Note that
i nverse="true" sideswill not be considered by SchemaEx-
port.

sql -type col umm_t ype overrides the default column type (attribute of <col urm>
element only)

check SQL expression create an SQL check constraint on either column or table

15.1.2. Running the tool

NHibernate 1.0.2

106

Toolset Guide

The schemaExport tool writesa DDL script to standard out and/or executes the DDL statements.

java -cp hibernate_classpathsnet . sf. hi ber nat e. t ool . hbn2ddI . SchemaExpor t options mapping_files

Table 15.2. schemaExport Command Line Options

Option

--qui et

--drop

--text

- - out put =ny_schena. ddl

--confi g=hi bernate. cfg. xm
--properties=hi bernate. properties
--format

--delimter=x

Description

don't output the script to stdout

only drop the tables

don't export to the database

output the ddl script to afile

read Hibernate configuration from an XML file
read database properties from afile

format the generated SQL nicely in the script

set an end of line delimiter for the script

Y ou may even embed SchemaExport in your application:

Configuration cfg =;

new SchemaExport (cfg).create(false,

15.1.3. Properties

Database properties may be specified

e assystem properties with - b<property>

e inhibernate.properties

true);

* inanamed propertiesfile with - - properti es

The needed properties are:

Table 15.3. SchemaExport Connection Properties

Property Name

hi ber nat e. connection. dri ver_cl ass

hi ber nat e. connection. url
hi ber nat e. connecti on. user nane
hi ber nat e. connecti on. password

hi ber nat e. di al ect

15.1.4. Using Ant

Description
jdbc driver class
jdbc url
database user
user password

dialect

NHibernate 1.0.2

107

Toolset Guide

Y ou can call schemaExport from your Ant build script:

<target nane="schenmamexport">
<t askdef nane="schenmaexport™"
cl assnanme="net . sf. hi bernat e. t ool . hbn2ddl . SchemaExport Task"
cl asspat href ="cl ass. pat h"/>

<schenmaexport
properties="hi bernate. properties"
qui et =" no"
text="no"
dr op="no"
delimter=";"
out put =" schema- export.sql ">
<fileset dir="src">

<i ncl ude nane="**/*_hbm xm "/ >

</fileset>

</ schemaexport >

</target>

If you don't specify properties or aconfig file, the SchemaExport Task will try to use norma Ant project

properties instead. In other words, if you don't want or need an external configuration or properties file, you
may put hi ber nat e. * configuration propertiesin your build.xml or build.properties.

15.1.5. Incremental schema updates

The schemaUpdat e tool will update an existing schema with "incremental” changes. Note that SchemaUpdat e
depends heavily upon the IDBC metadata API, so it will not work with all JDBC drivers.

java -cp hibernate classpathsnet . sf. hi bernat e. t ool . hbn2ddl . SchemaUpdat e options mapping_files

Table 15.4. schemaUpdat e Command L ine Options

Option Description
--qui et don't output the script to stdout
--properties=hi bernate. properties read database properties from afile

Y ou may embed SchemaUpdat e in your application:

Configuration cfg =;
new SchemaUpdat e(cf g) . execut e(fal se);

15.1.6. Using Ant for incremental schema updates

You can call schemaUpdat e from the Ant script:

<t arget nane="schenaupdate">
<t askdef nane="schenmaupdate"
cl assnanme="net . sf. hi bernat e. t ool . hbn2ddl . SchenaUpdat eTask"
cl asspat href ="cl ass. path"/>

<schenaupdat e
properti es="hi bernate. properties"
qui et =" no" >
<fileset dir="src">
<i ncl ude nane="**/*_hbm xm "/ >
</fileset>

NHibernate 1.0.2 108

Toolset Guide

</ schemaupdat e>
</target>

15.2. Code Generation

The Hibernate code generator may be used to generate skeletal Java implementation classes from a Hibernate
mapping file. Thistool isincluded in the Hibernate Extensions package (a seperate download).

hbnej ava parses the mapping files and generates fully working Java source files from these. Thus with
hbnej ava one could "just" provide the . hbmfiles, and then don't worry about hand-writing/coding the Java files.

java -cp hibernate _classpathsnet . sf. hi ber nat e. t ool . hbn2j ava. CodeGener at or options mapping_files

Table 15.5. Code Generator Command Line Options

Option Description
- - out put =output_dir root directory for generated code
--confi g=config_file optional file for configuring hbm2java

15.2.1. The config file (optional)

The config file provides for away to specify multiple "renderers' for the source code and to declare <net a> at-
tributes that is "global" in scope. See more about thisin the <net a> attribute section.

<codegen>
<neta attribute="inpl enents">codegen.test.|Auditabl e</ neta>
<gener at e renderer="net. sf. hi bernate. t ool . hbn2j ava. Basi cRenderer"/ >
<gener at e
package="aut of i nders. onl y"
suf fi x="Fi nder"
render er ="net . sf. hi ber nat e. t ool . hbnRj ava. Fi nder Renderer"/ >
</ codegen>

This config file declares a global meta attribute "implements’ and specify two renderers, the default one
(BasicRenderer) and a renderer that generates Finder's (See more in "Basic Finder generation” below).

The second renderer is provided with a package and suffix attribute.

The package attribute specifies that the generated source files from this renderer should be placed here instead
of the package scope specified in the . hbmfiles.

The suffix attribute specifies the suffix for generated files. E.g. here afile named Foo. j ava would be FooFi nd-
er.java instead.

It is adso possible to send down arbitrary parameters to the renders by adding <paranms attributes to the
<gener at e> €lements.

hbm2java currently has support for one such parameter, namely gener at e- concr et e- enpt y- cl asses which in-
forms the BasicRenderer to only generate empty concrete classes that extends a base class for al your classes.
The following config.xml example illustrate this feature

NHibernate 1.0.2 109

Toolset Guide

<codegen>
<generate prefix="Base" renderer="net.sf.hibernate.tool.hbn?java. Basi cRenderer"/>
<gener ate renderer="net.sf.hibernate.tool.hbn?java. Basi cRenderer">
<par am name="gener at e- concr et e- enpt y- cl asses" >t r ue</ par anr
<par am nane="basecl| ass- pr ef i x" >Base</ par an>
</ gener at e>
</ codegen>

Notice that this config.xml configure 2 (two) renderers. One that generates the Base classes, and a second one
that just generates empty concrete classes.

15.2.2. The net a attribute

The <net a> tag is a ssimple way of annotating the hbm xm with information, so tools have a natural place to
store/read information that is not directly related to the Hibernate core.

You can use the <nmet a> tag to tell hbn2j ava to only generate "protected” setters, have classes always imple-
ment a certain set of interfaces or even have them extend a certain base class and even more.

The following example:

<cl ass nanme="Person" >
<meta attribute="cl ass-description">
Javadoc for the Person class
@ut hor Frodo
</ met a>
<neta attribute="inpl enents">l Audi t abl e</ et a>
<id name="id" type="Ilong">
<neta attribute="scope-set">protected</neta>
<generator class="increnent"/>
</id>
<property nanme="nane" type="string">
<neta attribute="fiel d-description">The name of the person</neta>
</ property>
</ cl ass>

will produce something like the following (code shortened for better understanding). Notice the Javadoc com-
ment and the protected set methods:

/1 default package

import java.io.Serializable;

i mport org. apache. conmons. | ang. bui | der . Equal sBui | der

i mport org.apache. conmons. | ang. bui | der . HashCodeBui | der
i mport org. apache. conmons. | ang. bui | der. ToSt ri ngBui | der

/**

* Javadoc for the Person class
2 @wut hor Frodo

*

=[]

public class Person inmplements Serializable, |Auditable {

[** identifier field */
public Long id;

/** nullable persistent field */
public String name;

[** full constructor */
public Person(java.lang. String nanme) {
thi s. nane = nane;

}

NHibernate 1.0.2 110

Toolset Guide

/** default constructor */
public Person() {

}

public java.lang.Long getld() {
return this.id;
}

protected void setld(java.lang.Long id) {
this.id =id;
}

/**

* The nane of the person

*/

public java.lang. String get Name() {
return this.nanme

}

public void setNane(java.lang. String nanme) {
this. name = nane;
}

Table 15.6. Supported metatags

Attribute

cl ass-description
field-description
interface

i npl ement s

ext ends
gener at ed- cl ass
scope-cl ass
scope- set

scope- get

Description

inserted into the javadoc for classes

inserted into the javadoc for fields/properties

If true an interface is generated instead of an class.
interface the class should implement

class the class should extend (ignored for subclasses)
overrule the name of the actua class generated
scope for class

scope for setter method

scope for getter method

scope-field

scope for actual field

use-in-tostring
i mpl enent - equal s

use-in-equal s

bound
constrai ned
gen- property

property-type

include this property inthet oSt ri ng()
include aequal s() and hashCode() method in this class.

include this property in the equal s() and hashCode() meth-
od.

add propertyChangeL.istener support for a property
bound + vetoChangeL istener support for a property
property will not be generated if false (use with care)

Overrides the default type of property. Use this with any tag's
to specify the concrete type instead of just Object.

NHibernate 1.0.2

111

Toolset Guide

Attribute Description

cl ass- code Extra code that will inserted at the end of the class
extra-import Extraimport that will inserted at the end of all other imports
fi nder - met hod see "Basic finder generator" below

sessi on- net hod see "Basic finder generator" below

Attributes declared viathe <net a> tag are per default "inherited” inside an hbm xni file.

What does that mean? It means that if you e.g want to have all your classes implement | Audi t abl e then you
just add an <nmeta attribute="i npl enent s" >l Audi t abl e</ met a> in the top of the hbm xni file, just after
<hi ber nat e- mappi ng>. Now all classes defined in that hbm xni file will implement | Audi t abl e! (Except if a
class aso has an "implements' meta attribute, because local specified meta tags always overrules/replaces any
inherited meta tags).

Note: This applies to all <met a>-tags. Thus it can also e.g. be used to specify that all fields should be declare
protected, instead of the default privatee This is done by adding <nmeta attrib-
ut e="scope-fi el d">prot ect ed</ met a> at e.g. just under the <cl ass> tag and all fields of that class will be
protected.

To avoid having a <net a>-tag inherited then you can simply specify i nherit="fal se" for the attribute, e.g.
<meta attribute="scope-class" inherit="fal se">public abstract</neta> will restrict the "class-scope"
to the current class, not the subclasses.

15.2.3. Basic finder generator

It is now possible to have hbnej ava generate basic finders for Hibernate properties. This requires two thingsin
thehbm xm files.

Thefirgt is an indication of which fields you want to generate finders for. Y ou indicate that with a meta block
inside a property tag such as:

<property name="nanme" colum="nanme" type="string">
<meta attribute="finder-net hod">fi ndByNane</ met a>
</ property>

The finder method name will be the text enclosed in the meta tags.
The second isto create a config file for hbm2java of the format:

<codegen>

<generate renderer="net.sf.hi bernate.tool.hbn2j ava. Basi cRenderer"/ >

<generate suffix="Finder" renderer="net.sf.hibernate.tool.hbnRjava. Fi nder Renderer"/>
</ codegen>

And then use the param to hbn2j ava - - confi g=xxx. xni where xxx. xni isthe config file you just created.
An optional parameter is metatag at the classlevel of the format:

<meta attribute="session-nethod">
com what ever . Sessi onTabl e. get Sessi onTabl e() . get Sessi on() ;
</ met a>

NHibernate 1.0.2 112

Toolset Guide

Which would be the way in which you get sessions if you use the Thread Local Session pattern (documented in
the Design Patterns area of the Hibernate website).

15.2.4. Velocity based renderer/generator

It is now possible to use velocity as an alternative rendering mechanism. The follwing config.xml shows how to
configure hbm2javato use its velocity renderer.

<codegen>

<gener ate renderer="net.sf.hi bernate.tool.hbn?java. Vel oci t yRenderer">
<par am nane="t enpl at " >poj 0. vnx/ par an»

</ gener at e>

</ codegen>

The parameter named t enpl at e iS a resource path to the velocity macro file you want to use. This file must be
available via the classpath for hbm2java Thus remember to add the directory where pojo.vm islocated to your
ant task or shell script. (The default location is. /t ool s/ src/ vel ocity)

Be aware that the current poj o. vm generates only the most basic parts of the java beans. It is not as complete
and feature rich as the default renderer - primarily alot of the net a tags are not supported.

15.3. Mapping File Generation

A skeletal mapping file may be generated from compiled persistent classes using a command line utility called
MapGener at or . This utility is part of the Hibernate Extensions package.

The Hibernate mapping generator provides a mechanism to produce mappings from compiled classes. It uses
Java reflection to find properties and uses heuristics to guess an appropriate mapping from the property type.
The generated mapping is intended to be a starting point only. Thereis no way to produce a full Hibernate map-
ping without extra input from the user. However, the tool does take away some of the repetitive "grunt" work
involved in producing a mapping.

Classes are added to the mapping one at atime. The tool will reject classes that it judges are are not Hibernate
persistable.

To be Hibernate persistable a class

e must not be aprimitive type

e must not be an array

e must not be an interface

e must not be a nested class

¢ must have a default (zero argument) constructor.

Note that interfaces and nested classes actually are persistable by Hibernate, but this would not usually be in-
tended by the user.

MapGener at or Will climb the superclass chain of all added classes attempting to add as many Hibernate persist-
able superclasses as possible to the same database table. The search stops as soon as a property is found that has
aname appearing on alist of candidate UID names.

The default list of candidate UID property namesis: ui d, Ul D, i d, | D, key, KEY, pk, PK.

Properties are discovered when there are two methods in the class, a setter and a getter, where the type of the

NHibernate 1.0.2 113

Toolset Guide

setter's single argument is the same as the return type of the zero argument getter, and the setter returns voi d.
Furthermore, the setter's name must start with the string set and either the getter's name starts with get or the
getter's name starts with i s and the type of the property is boolean. In either case, the remainder of their names
must match. This matching portion is the name of the property, except that the initial character of the property
name is made lower case if the second letter islower case.

Therules for determining the database type of each property are as follows:

1. If theJavatypeisHi ber nat e. basi c() , then the property is a simple column of that type.

2. For hibernate. t ype. Type custom types and Per si st ent Enumasimple column is used as well.

3. If the property typeis an array, then a Hibernate array is used, and MapGener at or attempts to reflect on the
array element type.

4. |If the property hastypejava. util.List,java. util.Mp, Or java. util. Set, then the corresponding Hi-
bernate types are used, but MapGener at or cannot further process the insides of these types.

5. If the property's type is any other class, MapGener at or defers the decision on the database representation
until al classes have been processed. At this point, if the class was discovered through the superclass
search described above, then the property is an many- t o- one association. If the class has any properties,
thenitisaconponent . Otherwiseit is serializable, or not persistable.

15.3.1. Running the tool

The tool writes XML mappings to standard out and/or to afile.
When invoking the tool you must place your compiled classes on the classpath.

java -cp hibernate and your_ class classpaths net. sf. hi bernate. t ool . cl ass2hbm MapGener at or Options
and classnames

There are two modes of operation: command line or interactive.

The interactive mode is selected by providing the single command line argument - -i nteract. This mode
provides a prompt response console. Using it you can set the UID property name for each class using the
ui d=xxx command where xxx is the UID property name. Other command alternatives are simply a fully quali-
fied class name, or the command done which emits the XML and terminates.

In command line mode the arguments are the options below interspersed with fully qualified class names of the
classes to be processed. Most of the options are meant to be used multiple times; each use affects subsequently
added classes.

Table 15.7. MapGenerator Command Line Options

Option Description

--qui et don't output the O-R Mapping to stdout

--set Ul D=ui d set the list of candidate UIDs to the singleton uid

--addUl D=ui d add uid to the front of thelist of candidate UIDs

--sel ect =mode mode use select mode mode(e.g., distinct or all) for subsequently added
classes

--dept h=<smal | -i nt > limit the depth of component data recursion for subsequently added
classes

NHibernate 1.0.2 114

Toolset Guide

Option Description

- - out put =ny_mappi ng. xm output the O-R Mapping to afile
full.class.Name add the class to the mapping

- - abst r act =full.class.Name see below

The abstract switch directs the map generator tool to ignore specific super classes so that classes with common
inheritance are not mapped to one large table. For instance, consider these class hierarchies:

Ani nal - - >Mammal - - >Human
Ani mal - - >Manmal - - >Mar supi al - - >Kangar oo

If the - - abst ract switch is not used, all classes will be mapped as subclasses of Ani mal , resulting in one large
table containing all the properties of all the classes plus a discriminator column to indicate which subclassis ac-
tually stored. If Manmal is marked as abst ract , Human and Mar supi al will be mapped to separate <cl ass> de-
clarations and stored in separate tables. Kangar oo Will still be a subclass of Mar supi al unless Mar supi al isaso
marked asabst ract .

NHibernate 1.0.2 115

Chapter 16. Example: Parent/Child

One of the very first things that new users try to do with NHibernate is to model a parent / child type relation-
ship. There are two different approaches to this. For various reasons the most convenient approach, especialy
for new users, isto model both par ent and chi | d as entity classes with a<one- t o- many> association from Par -
ent to Chi | d. (The alternative approach is to declare the chi | d as a <conposi t e- el ement >.) Now, it turns out
that default semantics of a one to many association (in NHibernate) are much less close to the usual semantics
of a parent / child relationship than those of a composite element mapping. We will explain how to use a bid-
irectional one to many association with cascades to model a parent / child relationship efficiently and eleg-
antly. It'snot at all difficult!

16.1. A note about collections

NHibernate collections are considered to be alogical part of their owning entity; never of the contained entities.
Thisisacrucia distinction! It has the following consequences.

¢ When we remove / add an object from / to a collection, the version number of the collection owner isincre-
mented.

« If an object that was removed from a collection is an instance of a value type (eg, a composite el ement), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

e On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behavior is completely consistent - a change to the interna state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behavior is that adding an entity to a collection merely creates alink between the two entit-
ies, while removing it removes the link. Thisis very appropriate for all sorts of cases. Where it is not appropri-
ate at al is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

16.2. Bidirectional one-to-many

Suppose we start with asimple <one- t o- many> association from Par ent to Chi | d.

<set nanme="Children">
<key colum="parent _id" />
<one-to-many class="Child" />
</set>

If we were to execute the following code

Parent p = ;
Child ¢ = new Child();
p. Chi | dren. Add(c);
sessi on. Save(c);
session. Fl ush();

NHibernate would issue two SQL statements:

NHibernate 1.0.2 116

Example: Parent/Child

e an| NSERT to create the record for ¢

* an UPDATE to create thelink fromp toc

Thisisnot only inefficient, but also violates any NOT NULL constraint on the par ent _i d column.

The underlying cause is that the link (the foreign key par ent _i d) from p to c is not considered part of the state
of the chi | d object and is therefore not created in the | NSERT. So the solution is to make the link part of the

Chi | d mapping.

<many-t o-one nane="Parent" col um="parent _id" not-null="true"/>

(We aso need to add the Par ent property to the chi | d class.)

Now that the cni | d entity is managing the state of the link, we tell the collection not to update the link. We use

thei nver se attribute.

<set name="Children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

The following code would be used to add a new chi | d.

Parent p = (Parent) session.Load(typeof(Parent), pid);
Child ¢ = new Child();

c. Parent = p;

p. Chi | dren. Add(c);

sessi on. Save(c);

sessi on. Fl ush();

And now, only one SQL 1 NSERT would be issued!
To tighten things up a bit, we could create an Addchi | d() method of Par ent .

public void AddChild(Child c)
{

c.Parent = this;

chi l dren. Add(c);

Now, the code to add a chi | d lookslike

Parent p = (Parent) session. Load(typeof(Parent), pid);
Child ¢ = new Child();

p. AddChi I d(c);

sessi on. Save(c);

sessi on. Fl ush();

16.3. Cascading lifecycle

The explicit call to save() isstill annoying. We will address this by using cascades.

<set nane="Children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

NHibernate 1.0.2

117

Example: Parent/Child

This simplifies the code above to

Parent p = (Parent) session. Load(typeof(Parent), pid);
Child ¢ = new Child();

p. AddChi | d(c);

session. Fl ush();

Similarly, we don't need to iterate over the children when saving or deleting a Par ent . The following removes p
and all its children from the database.

Parent p = (Parent) session. Load(typeof(Parent), pid);
sessi on. Del ete(p);
sessi on. Fl ush();

However, this code

Parent p = (Parent) session.Load(typeof(Parent), pid);

/1 Get one child out of the set

| Enuner at or chil dEnunmerator = p. Chil dren. Get Enunerator () ;
chi | dEnuner at or . MoveNext () ;

Child ¢ = (Child) childEnunerator. Current;

p. Chi | dren. Renove(c);
c. Parent = null;
sessi on. Fl ush();

will not remove ¢ from the database; it will only remove the link to p (and cause a NOT NULL constraint viola
tion, in this case). Y ou need to explicitly Del et e() the cni | d.

Parent p = (Parent) session. Load(typeof(Parent), pid);

/Il Get one child out of the set

| Enuner at or chil dEnunmerator = p. Chil dren. Get Enunerator ();
chi | dEnurrer at or . MoveNext () ;

Child ¢ = (Child) childEnunerator. Current;

p. Chi | dren. Renove(c);
session. Del ete(c);
sessi on. Fl ush();

Now, inour case, achi |l d can't really exist without its parent. So if we remove a chi | d from the collection, we
really do want it to be deleted. For this, we must use cascade="al | - del et e- or phan" .

<set name="Children" inverse="true" cascade="all -del ete-orphan">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

Note: even though the collection mapping specifiesi nver se="t rue", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply set its parent.

16.4. Using cascading Updat e()

Suppose we loaded up a Par ent in one | Sessi on, made some changes in a Ul action and wish to persist these
changes in a new 1Session (by calling Updat e()). The Parent will contain a collection of children and, since
cascading update is enabled, NHibernate needs to know which children are newly instantiated and which rep-
resent existing rows in the database. L et's assume that both Par ent and chi | d have (synthetic) identifier proper-
ties of type I ong. NHibernate will use the identifier property value to determine which of the children are new.

NHibernate 1.0.2 118

Example: Parent/Child

(Y ou may also use the version or timestamp property, see Section 9.4.2, “Updating detached objects’.)

The unsaved- val ue attribute is used to specify the identifier value of a newly instantiated instance. In
NHibernate it is not necessary to specify unsaved- val ue explicitly.

The following code will update par ent and chi | d and insert newchi | d.

[/ parent and child were both | oaded in a previous session
par ent . AddChi | d(chi | d);

Child newChild = new Child();

par ent . AddChi | d(newChi | d) ;

sessi on. Updat e(parent) ;

sessi on. Fl ush();

Well, thats all very well for the case of a generated identifier, but what about assigned identifiers and composite
identifiers? This is more difficult, since unsaved- val ue can't distinguish between a newly instantiated object
(with an identifier assigned by the user) and an object loaded in a previous session. In these cases, you will
probably need to give NHibernate a hint; either

» define an unsaved- val ue On a<versi on> Of <t i mest anp> property mapping for the class.

e set unsaved-val ue="none" and explicitly Save() newly instantiated children before calling Up-
dat e(parent)

e set unsaved-val ue="any" and explicitly Update() previously persistent children before calling Up-
dat e(parent)

nul | is the default unsaved- val ue for assigned identifiers, none is the default unsaved- val ue for composite
identifiers.

There is one further possibility. There isanew 11 nt er cept or method named | sunsaved() which lets the ap-
plication implement its own strategy for distinguishing newly instantiated objects. For example, you could
define abase class for your persistent classes.

public class Persistent

{
private bool _saved = false;
public void OnSave()
{
_saved=true;
}
public void OnLoad()
{
_saved=true;
}
public bool I|sSaved
{
get { return _saved; }
}
}

(The saved property is non-persistent.) Now implement | sunsaved(), along with onLoad() and onSave() as
follows.

publ i c object |sUnsaved(object entity)

{

if (entity is Persistent)

NHibernate 1.0.2 119

Example: Parent/Child

{
return ! ((Persistent) entity).lsSaved;
}
el se
{
return null;
}

}

public bool OnLoad(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
I Type[] types)

if (entity is Persistent) ((Persistent) entity).OnLoad();
return false;

}

publ i ¢ bool ean OnSave(object entity,
object id,
object[] state,
string[] propertyNanes,
I Type[] types)

if (entity is Persistent) ((Persistent) entity).OnSave();
return false;

16.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out quite nicely. Most NHibernate applications use the parent / child pattern in many places.

We mentioned an aternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > Mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes. composite el ements may not own collections,
and they should not be the child of any entity other than the unique parent. (However, they may have a surrog-
ate primary key, using an <i dbag> mapping.)

NHibernate 1.0.2 120

Chapter 17. Example: Weblog Application

17.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-

ard parent/child relationship, but we will use an ordered bag, instead of a set.

usi ng System
usi ng System Col | ecti ons;

nanmespace Eg

{

public class Blog

{

private long _id;
private string _namne;
private |List _itens;

public virtual long Id

{
get { return _id; }
set { _id = value; }

}

public virtual IList Itens

{
get { return _itens; }
set { _itens = value; }

}

public virtual string Nane

{
get { return _name; }
set { _nane = value; }

usi ng System

namespace Eg

{

public class Blogltem

{

private long _id;

private DateTi me _dateTine;
private string _text;
private string _title;
private Blog _bl og;

public virtual Bl og Blog

{
get { return _blog; }
set { _blog = value; }

}
public virtual DateTime DateTine
{
get { return _dateTinme; }
set { _dateTime = val ue;
}

public virtual long Id

{
get { return _id; }

NHibernate 1.0.2

121

Example: Weblog Application

set { _id = value; }

}
public virtual string Text
{
get { return _text; }
set { _text = value; }
}
public virtual string Title
{
get { return _title; }
set { _title = value; }
}

17.2. Hibernate Mappings

The XML mappings should now be quite straightforward.

<?xm version="1.0"?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
assenbl y="Eg" nanmespace="Eg">

<cl ass
nane="Bl og"
t abl e=" BLOGS"
| azy="true">

<id
name="1d"
col um="BLOG_| D' >

<generator class="native"/>
</id>

<property
nanme=" Nanme"
col um=" NAME"
not -nul | ="true"
uni que="true"/>

<bag
name="1Itens"
i nverse="true"
| azy="true"
or der - by="DATE_TI ME"
cascade="al | ">

<key col um="BLOG | D'/ >
<one-to-many class="Bl oglteni/>

</ bag>
</cl ass>
</ hi ber nat e- mappi ng>
<?xm version="1.0"?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"

assenbl y="Eg" nanmespace="Eg">

<cl ass
nanme="Bl ogl t enf

NHibernate 1.0.2 122

Example: Weblog Application

t abl e="BLOG | TEMS"
dynam c- updat e="true" >

<id

name="1d"

col um="BLOG | TEM | D' >

<generator class="native"/>
</id>
<property

name="Titl e"

col um="TI TLE"

not-null ="true"/>
<property

name="Text"

col um="TEXT"

not-null ="true"/>
<property

nanme="Dat eTi ne"
col um="DATE_TI ME"
not-null ="true"/>

<nmany-t o-one
nane="Bl og"
col um="BLOG | D"
not -nul | ="true"/>

</ cl ass>

</ hi ber nat e- mappi ng>

17.3. NHibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using NHibernate.

usi ng System
usi ng System Col | ecti ons;

usi ng NHi ber nat e. Tool . hbn2ddl ;

nanmespace Eg

{
public class Bl ogMain

{

private | SessionFactory _sessions;

public void Configure()

{
_sessions = new Configuration()
. AddCl ass(typeof (Bl 0g))
. AddCl ass(typeof (Bl oglten))
. Bui | dSessi onFactory();
}
public voi d Export Tabl es()
{
Configuration cfg = new Configuration()
. AddCl ass(typeof (Bl 0g))
. AddCl ass(typeof (Bloglten));
new SchemaExport(cfg).create(true, true);
}

public Bl og CreateBl og(string nane)

NHibernate 1.0.2

123

Example: Weblog Application

{
Bl og bl og = new Bl og();
bl og. Name = nane;
bl og.Itens = new ArraylList();
usi ng (I Session session = _sessi ons. OpenSessi on())
using (Il Transaction tx = session. Begi nTransacti on())
{
sessi on. Save(bl og) ;
tx. Commit();
}
return bl og;
}
public Bl ogltem CreateBl ogltem(Bl og blog, string title, string text)
{
Blogltemitem = new Blogltem();
itemTitle =title;
item Text = text;
item Bl og = bl og;
item DateTi me = DateTi me. Now;
bl og. I tens. Add(item;
usi ng (Il Session session = _sessi ons. OpenSessi on())
using (Il Transaction tx = session.Begi nTransaction())
{
sessi on. Updat e(bl og) ;
tx. Commit();
}
return item
}
public Blogltem CreateBl oglten(long blogld, string title, string text)
{
Blogltemitem = new Blogltenm();
itemTitle =title;
item Text = text;
item DateTi me = DateTi me. Now;
usi ng (| Session session = _sessions. OpenSession())
using (Il Transaction tx = session.Begi nTransaction())
{
Bl og bl og = (Bl og) session. Load(typeof (Bl og), blogld);
item Bl og = bl og;
bl og. I tens. Add(iten);
tx. Commit();
}
return item
}
public void UpdateBlogltenm(Blogltemitem string text)
{
item Text = text;
usi ng (Il Session session = _sessi ons. OpenSessi on())
using (Il Transaction tx = session. Begi nTransacti on())
{
sessi on. Update(item;
tx. Commit();
}
}
public void UpdateBlogltem(long itemd, string text)
{
using (| Session session = _sessions. QpenSession())
using (Il Transaction tx = session. Begi nTransacti on())
{

Blogltemitem = (Bloglten) session.Load(typeof(Blogltem, itemd);

NHibernate 1.0.2 124

Example: Weblog Application

item Text = text;

tx. Commit();
}
}
public IList listAllBIogNanesAndltenCounts(int max)
{
IList result = null;
using (| Session session = _sessions. QpenSession())
using (Il Transaction tx = session. Begi nTransacti on())
{
| Query q = session. CreateQuery(
"sel ect blog.id, blog.Nane, count(blogltem) " +
"fromBlog as blog " +
"l eft outer join blog.ltems as blogltem" +
"group by blog. Nane, blog.id " +
"order by max(bl ogltem DateTi ne)"
)
g. Set MaxResul t s(max) ;
result = q.List();
tx. Commit();
}
return result;
}
public Bl og CetBl ogAndAl I | tens(l ong bl ogl d)
{
Bl og blog = null;
usi ng (| Session session = _sessions. OpenSession())
using (Il Transaction tx = session.Begi nTransaction())
{
| Query q = session. createQuery(
"fromBlog as blog " +
"l eft outer join fetch blog.ltens " +
"where blog.id = :blogld"
)
g. Set Par anet er (" bl ogl d", bl ogld);
blog = (Blog) g.List()[0];
tx. Commit();
}
return bl og;
}
public IList ListBl ogsAndRecentltens()
{
IList result = null;
usi ng (I Session session = _sessi ons. OpenSessi on())
using (Il Transaction tx = session. Begi nTransacti on())
{
| Query g = session. CreateQuery(
"fromBlog as blog " +
"inner join blog.ltenms as blogltem" +
"where bl ogltem DateTime > : m nDate"
)
Dat eTi me date = Dat eTi me. Now. Addvbnt hs(-1);
g. Set Dat eTi ne(" m nDate", date);
result = g.List();
tx. Commit();
}
return result;
}

NHibernate 1.0.2 125

Chapter 18. Example: Various Mappings

This chapter shows off some more complex association mappings.

18.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee Uses an actual entity class (Enpl oy-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetory values and employee names.

Employer Employment Employee Name
ploy +employer 0.% kit 0.+ Py

-id : long -startDate : Date = -id : long ~firstWame : 5tring
—hame : 5tring -endDate : Date +employee| taxfileMumber ; String +namel initial : char
+getldd : long -id : lang +gethamen : Hame ~lastName : String
+zetld_id:long +getstartDated : Date +setNameiname: Namel +getFirstNamen : 5tring
+getHamed ; String +setitartDate_startDate:Date) +getldi : long +3etFirstName_firstNameString
+setName_name:String) +getEndDated : Date +setldi_id:longs +ygetlnitiald : char

+setEndDatei_endDate:Datel +getTaxfileMumberd : String +setlnitialCinitial:chan

+getHourlyRated : MonetorgAmount +setTaxfileNumber_taxfileMumberString +getlastMamen ; String

+setHourlyRatelrate: Monetorydmount) +setlasthame_lastName:String

+getldd : long

+set|;(_|tl:l:lonil Emol +hourlyRatd Monetorydmount

+aget :

+gEtEmD| oyeri mEp 05;er " -amount : Bighecimal

setEmployeriemp:Employe
poy pEmpley —currency © Currency
+getEmployvesd : Employes - -
+getAmountd : Bighecimal
+setEmployveelemp Employves) X .
+setAmounti_amount:BigDecimal

+getCurrencyl @ Currency
+ et CUrrency_Currency Currencyl

Here's a possible mapping document:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
assenbl y="..." nanespace="...">

<cl ass nanme="Enpl oyer" tabl e="enpl oyers">
<id name="1d">
<gener ator class="sequence">
<par am nane="sequence" >enpl oyer _i d_seq</ par an>
</ gener at or >
</id>
<property nane="Nane"/>
</ cl ass>

<cl ass nane="Enpl oynent" tabl e="enpl oynent _peri ods" >

<id name="|d">
<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oynent _i d_seq</ par anr
</ gener at or >
</id>
<property nane="StartDate" colum="start_date"/>
<property nane="EndDate" col um="end_date"/>

<conponent name="Hourl yRate" cl ass="MnetaryAnmount">
<property name="Anount">
<col umm nanme="hourly_rate" sql-type="NUMERI C(12, 2)"/>
</ property>
<property nane="Currency" |ength="12"/>
</ conponent >

<many-t o- one nane="Enpl oyer" col um="enpl oyer i d" not-null="true"/>
<many-t o- one nane="Enpl oyee" col um="enpl oyee_i d" not-nul |l ="true"/>
</ cl ass>

<cl ass nanme="Enpl oyee" tabl e="enpl oyees">

NHibernate 1.0.2 126

Example: Various Mappings

<id name="1d">

<gener ator cl ass="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an>

</ gener at or >

</id>

<property nanme="Taxfil eNunber"/>

<component name="Nane" cl ass="Nanme" >
<property nanme="FirstNane"/>
<property nane="Initial"/>
<property nane="Last Nane"/>

</ conponent >

</ cl ass>

</ hi ber nat e- mappi ng>

And here's the table schema generated by SchenaExport .

create table enployers (
Id BIG@ NT not null,
Nanme VARCHAR(255),
primary key (1d)

)

create tabl e enpl oynent _periods (
Id BIG@ NT not null,
hourly_rate NUMERI C(12, 2),
Currency VARCHAR(12),
enpl oyee_id BIG NT not null,
enpl oyer _id BIG NT not null,
end_dat e TI MESTAWP
start _date TI MESTAMP
primary key (1d)

)

create tabl e enpl oyees (
Id BIG@ NT not null,
Fi r st Nane VARCHAR(255),
Initial CHAR(1),
Last Nanme VARCHAR(255),
Taxfi | eNunber VARCHAR(255),
primary key (1d)

)

alter table enpl oynent_peri ods

add constraint enpl oynment _peri odsFKO forei gn key (enployer_id) references enpl oyers
alter table enpl oynent_peri ods

add constraint enpl oyment _peri odsFK1 foreign key (enployee_id) references enpl oyees
create sequence enpl oyee_id_seq
create sequence enpl oynent _i d_seq
create sequence enpl oyer_id_seq

18.2. Author/Work

Consider the following model of the rel ationships between wr k, Aut hor and Per son. We represent the relation-
ship between wor k and Aut hor as a many-to-many association. We choose to represent the relationship between
Aut hor and Per son as one-to-one association. Another possibility would be to have Aut hor extend Per son.

NHibernate 1.0.2 127

Example: Various Mappings

Whark: Author Persan

-id : long -id : long -id : long
~title : String 0..* 0% | _alias : String -hame : String
+qgetldd : long oo rhes +authord+oetidd : lang +persoh |HOetldd :long
+ietldi_id:long +zetldi_id:long +zetldiid:long
+gethuthorsi : Set +getWarksn : Set +getamen : 5tring
+setfAuthorsiemployees:Set) +setWarkslemployers:Set) +setName_namesString
+getTitled : 5tring +getPersond ; Person
+setTitle_title:String) +setPersanipersan:Person)

+gethliaso : 5tring

+setfliasi_alias:String

song Book
~tempao : float ~text :int
-genre : 5tring

+getTextd:int

+gethenred - String +setText_textiint
+ietGenre_genre:String)

+getTempob ; float
+ietTempai_tempo:floar

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
assenbl y="..." nanmespace="...">

<cl ass name="Work" tabl e="works" discrinmnator-val ue="W>

<id name="1d" colum="id">
<generator class="native"/>
</id>
<di scri m nator colum="type" type="character"/>

<property nane="Title"/>
<set name="Aut hors" tabl e="author_work" |azy="true">

<key>
<col um nane="work_i d" not-null="true"/>
</ key>
<many-t o- many cl ass="Aut hor" >
<col um nane="aut hor i d" not-null="true"/>
</ many-t o- many>
</set>

<subcl ass nane="Book" di scri m nator-val ue="B">
<property nane="Text" colum="text" />
</ subcl ass>

<subcl ass nane="Song" di scri m nator-val ue="S">
<property nane="Tenpo" col um="tenpo" />
<property nane="Genre" col unm="genre" />
</ subcl ass>
</ cl ass>

<cl ass name="Aut hor" tabl e="aut hors">

<id nanme="1d" colum="id">

<l-- The Author nust have the sane identifier as the Person -->
<generator cl ass="assi gned"/>
</id>

<property nane="Alias" colum="alias" />
<one-t o-one nanme="Person" constrai ned="true"/>

<set nanme="Wirks" tabl e="author_work" inverse="true" |azy="true">
<key col um="aut hor _i d"/>

NHibernate 1.0.2 128

Example: Various Mappings

<many-t o- many cl ass="Wrk" col um="work_id"/>
</set>

</ cl ass>

<cl ass nane="Person" tabl e="persons">
<id name="1d" col um="id">
<generator class="native"/>
</id>
<property nane="Nane" col um="nane" />
</ cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping. wor ks, aut hor s and per sons hold work, author and person data respect-
ively. aut hor _work is an association table linking authors to works. Heres the table schema, as generated by
SchemaExport .

create table works (
id BIGA NT not null generated by default as identity,
tenmpo FLOAT,
genre VARCHAR(255),
text | NTEGER,
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)
)

create tabl e author_work (
aut hor _id BIA NT not null,
work id BIG NT not null,
primary key (work_id, author_id)
)

create table authors (
id BIGA NT not null generated by default as identity,
al i as VARCHAR(255),
primary key (id)

)

create tabl e persons (
id BIA NT not null generated by default as identity,
nane VARCHAR(255),
primary key (id)

)

alter table authors

add constraint authorsFKO foreign key (id) references persons
alter table author_work

add constraint author_workFKO foreign key (author_id) references authors
alter table author_work

add constraint author_workFK1 foreign key (work_id) references works

18.3. Customer/Order/Product

Now consider a model of the relationships between cCust oner, Order and Li nel temand Product . There is a
one-to-many association between cust omer and order, but how should we represent order / Lineltem/
Product ? I've chosen to map Li nel tem as an association class representing the many-to-many association
between o der and Pr oduct . In NHibernate, thisis called a composite €lement.

NHibernate 1.0.2 129

Example: Various Mappings

Customer Order Lineltem Product

- 0. = 1.2 — [-
-id : long -id : long —quantity :int -id : long
-hame : 5tring +customer +orders |-date : Date +Iine|ter1€ +getCuantityl : int +|Jr0dlﬁt/ -setialNumber : String
+getldd : long +aetldd : lang +setluantityl_quantity:int) +getldo: long
+setldizid:lang +setldi_id:long +getProductd ; Product +setldi_id:long
+getNamed : String +getlineltemso : List +setProductiproduct:Product) +getserialMumberd : String
+setNamei_name:>5tring +setlineltemsilineltems:List) +setSerialNumber_serialNumber:String
+getOrdersd : Set +getCustamerd : Customer
+setOrdersiordersSet) +ietCustomericustomer:Customen

+getDated : Date
+setDatei_date:Date)

The mapping document:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 0"
assenbl y="..." nanmespace="...">

<cl ass nane="Custoner" tabl e="custoners">
<id name="1d" col um="id">
<generator class="native"/>
</id>
<property nane="Nanme" col um="nane"/>
<set name="Orders" inverse="true" |azy="true">
<key col um="custoner_id"/>
<one-to-many class="Order"/>
</set>
</ cl ass>

<cl ass nanme="Order" tabl e="orders">
<id name="1d" col um="id">
<generator class="native"/>
</id>
<property nane="Date" colum="date"/>
<many-t o- one nane="Customer" col um="customner_id"/>

<list nane="Lineltens" table="line_itens" |azy="true">
<key col um="order_id"/>
<i ndex col um="1i ne_nunber"/>

<conposi te-el ement cl ass="Lineltent>
<property nane="Quantity" colum="quantity"/>
<many-t o- one nane="Product" col utm="product _id"/>
</ conposi t e-el enent >
</[list>
</ cl ass>

<cl ass nanme="Product" tabl e="products">
<id name="1d" col um="id">
<generator class="native"/>
</id>
<property nane="Serial Nunber" col um="seri al _nunber" />
</ cl ass>

</ hi ber nat e- mappi ng>

customers, orders, i ne_i tems and product s hold customer, order, order line item and product data respect-
ively. i ne_i t ens also acts as an association table linking orders with products.

create table custoners (
id BIA NT not null generated by default as identity

name VARCHAR(255),
primary key (id)
)

create table orders (
id BIA NT not null generated by default as identity
custoner _id Bl G NT,
date TI MESTAMP
primary key (id)
)

create table line_itens (

NHibernate 1.0.2 130

Example: Various Mappings

|'i ne_nunber | NTEGER not nul |,

order _id BIGNT not null,

product _id Bl G NT,

quantity | NTEGER,

primary key (order_id, |ine_nunber)

)

create table products (
id BIA NT not null generated by default as identity
serial _nunber VARCHAR(255),
primary key (id)

)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners
alter table line_itens

add constraint line_itensFKO foreign key (product_id) references products
alter table line_itens

add constraint |line_itenmsFKL foreign key (order_id) references orders

NHibernate 1.0.2

131

Chapter 19. Best Practices

Write fine-grained classes and map them using <conponent >.
Use an Addr ess class to encapsulate street, suburb, state, post code. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
NHibernate makes identifier properties optional. There are all sorts of reasons why you should use them.
We recommend that identifiers be 'synthetic' (generated, with no business meaning) and of a non-primitive
type. For maximum flexibility, use | nt 64 or Stri ng.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map Eg. Foo in the file Eg/ Foo. hbm xm . This makes par-
ticularly good sense in ateam environment.

Embed mappingsin assemblies.
Place mapping files along with the classes they map and declare them as Enbedded ResourceSin Visua
Studio.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use parameters.
Asin ADO.NET, always replace non-constant values by "?'. Never use string manipulation to bind a non-
constant value in aquery! Even better, consider using hamed parametersin queries.

Don't manage your own ADO.NET connections.
NHibernate lets the application manage ADO.NET connections. This approach should be considered a last-
resort. If you can't use the built-in connections providers, consider providing your own implementation of
NHi ber nat e. Connecti on. | Connecti onProvi der.

Consider using a custom type.
Suppose you have atype, say from some library, that needs to be persisted but doesn't provide the accessors
needed to map it as a component. You should consider implementing NHi ber nat e. | User Type. This ap-
proach frees the application code from implementing transformations to / from an NHibernate type.

Use hand-coded ADO.NET in bottlenecks.
In performance-critical areas of the system, some kinds of operations (eg. mass update / delete) might bene-
fit from direct ADO.NET. But please, wait until you know something is a bottleneck. And don't assume that
direct ADO.NET is necessarily faster. If need to use direct ADO.NET, it might be worth opening a
NHibernate | Sessi on and using that SQL connection. That way you can still use the same transaction
strategy and underlying connection provider.

Understand | Ssessi on flushing.
From time to time the | Session synchronizes its persistent state with the database. Performance will be af-
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In athreetiered architecture, consider using SaveOr Updat e() .
When using a distributed architecture, you could pass persistent objects loaded in the middle tier to and
from the user interface tier. Use a new session to service each request. Use | Sessi on. Updat e() Or | Ses-

NHibernate 1.0.2 132

Best Practices

si on. SaveOr Updat e() to update the persistent state of an object.

In atwo tiered architecture, consider using session disconnection.
Database Transactions have to be as short as possible for best scalability. However, it is often neccessary to
implement long running Application Transactions, a single unit-of-work from the point of view of a user.
This Application Transaction might span several client requests and response cycles. Either use Detached
Objects or, in two tiered architectures, simply disconnect the NHibernate Session from the ADO.NET con-
nection and reconnect it for each subsequent request. Never use a single Session for more than one Applic-
ation Transaction usecase, otherwise, you will run into stale data.

Don't treat exceptions as recoverable.
This is more of a necessary practice than a "best" practice. When an exception occurs, roll back the
I Transact i on and close the I Sessi on. If you don't, NHibernate can't guarantee that in-memory state accur-
ately represents persistent state. As a special case of this, do not use I Sessi on. Load() to determine if an
instance with the given identifier exists on the database; use Get () or aquery instead.

Prefer lazy fetching for associations.
Use eager (outer-join) fetching sparingly. Use proxies and/or lazy collections for most associations to
classes that are not cached in the second-level cache. For associations to cached classes, where there is a
high probability of a cache hit, explicitly disable eager fetching using f et ch="sel ect ". When an outer-join
fetch is appropriate to a particular use case, use aquery withaleft join fetch.

Consider abstracting your business logic from NHibernate.
Hide (NHibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. Y ou can even have some classes persisted by handcoded ADO.NET, associated to NHibernate via an
I User Type. (Thisadvice isintended for "sufficiently large" applications; it is not appropriate for an applica-
tion with five tables!)

Implement Equal s() and Get HashCode() uSing aunique business key.

If you compare objects outside of the ISession scope, you have to implement Equal s() and
Get HashCode() . Inside the 1Session scope, object identity is guaranteed. If you implement these methods,
never ever use the database identifier! A transient object doesn't have an identifier value and NHibernate
would assign a value when the object is saved. If the object isin an 1Set while being saved, the hash code
changes, breaking the contract. To implement Equal s() and Get HashCode(), USe a unique business key,
that is, compare a unique combination of class properties. Remember that this key has to be stable and
unique only while the object isin an 1Set, not for the whole lifetime (not as stable as a database primary
key). Never use collections in the Equal s() comparison (lazy loading) and be careful with other associated
classes that might be proxied.

Don't use exotic association mappings.
Good usecases for areal many-to-many associations are rare. Most of the time you need additional inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it is really neccessary.

NHibernate 1.0.2 133

Part I. NHibernateContrib Documentation

Preface

The NHibernateContrib is various programs contributed to NHibernate by members of the NHibernate Team or
by the end users. The projectsin here are not considered core pieces of NHibernate but they extend it in a use-
ful way.

NHibernate 1.0.2 CXXXV

Chapter 20. NHibernate.Caches

What is NHiber nate.Caches?

NHiber nate.Caches are add-ins for NHiber nate [http://www.nhiber nate.org] contributed by Kevin Willi-
ams (aka k-dub). A cacheis place where entities are kept (at their first loading); once in cache, they can be re-
trieved without having to query them (again) in the back-end storage. This means that they are faster to
(re)load.

An NHibernate session has an internal (first-level) cache where it keepsits entities. There is no sharing between
these caches; so a session is destroyed with its cache. NHibernate provides a second-level cache system; it
works at the SessionFactory level. So it is shared by all sessions created by the same SessionFactory.

An important point is that the second-level cache does not cache instances of the object type being cached; in-
stead it caches the individual values of the properties of that object. This provides two benefits. One, NHibern-
ate doesn't have to worry that your client code will manipulate the objects in away that will disrupt the cache.
Two, the relationships and associations do not become stale, and are easy to keep up-to-date because they are
simply identifiers. The cache is not a tree of objects but rather amap of arrays.

With the session-per-request model, a high humber of Session can concurrently access to the same entity
without hitting the database each time; hence the performance gain.

These contributions make it possible to use different cache providers for NHibernate:

* NHibernate.Caches.Prevalence makes it possible to use the underlying Banboo. Preval ence implementa
tion as cache provider. Open the file Banboo. Preval ence. | i cense. t xt for more information about its li-
cense; you can also visit its website [http://bbooprevalence.sourceforge.net/].

¢ NHibernate.Caches.SysCache makes it possible to use the underlying Syst em Web. Cachi ng. Cache imple-
mentation as cache provider. This means that you can rely on ASP.NET caching feature to understand how
it works. For more information, read (on the MSDN): Caching Application Data
[http://msdn.microsoft.com/library/en-us/cpguide/html/cpconcacheapis.asp).

20.1. How to use a cache?

Here are the steps to follow to enable the second-level cache in NHibernate:

» Choose the cache provider you want to use and copy its assembly in your assemblies directory (NHi ber n-
at e. Caches. Preval ence. dl | Or NHi ber nat e. Caches. SysCache. dI |).

» Totell NHibernate which cache provider to use, add in your NHibernate configuration file (can be Your As-
senbl y. exe. confi g Of web. configora.cfg.xm file):

<add key="hi bernat e. cache. provi der _cl ass" val ue="xxx" />(1)
<add key="expiration" val ue="120" />(2)

(1) "Xxx" can be either "NHi bernate. Caches. Preval ence. Preval enceCacheProvi der, NHi bern-
ate. Caches. Preval ence” Or "NHi bernate. Caches. SysCache. SysCachePr ovi der, NHi ber n-
at e. Caches. SysCache".

NHibernate 1.0.2 136

http://www.nhibernate.org
http://bbooprevalence.sourceforge.net/
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconcacheapis.asp

NHibernate.Caches

(2) Theexpiration valueisthe number of seconds you wish to cache each entry (here two minutes). This
example appliesto SysCache only.

¢ Add <cache usage="read-write|nonstrict-read-writelread-only"/> (just after <class>) in the mapping of
the entities you want to cache. It also works for collections (bag, list, map, set, ...).

Be careful. Caches are never aware of changes made to the persistent store by another process (though they
may be configured to regularly expire cached data). As the caches are created at the SessionFactory level, they
are destroyed with the SessionFactory instance; so you must keep them alive as long as you need them.

20.2. Prevalence Cache Configuration

There is only one configurable parameter: prevalenceBase. This is the directory on the file system where the
Prevalence engine will save data. It can be relative to the current directory or afull path. If the directory doesn't
exist, it will be created.

20.3. SysCache Configuration

As SysCache relies on Syst em Web. Cachi ng. Cache for the underlying implementation, the configuration is
based on the available options that make sense for NHibernate to utilize.

e expiration = number of seconds to wait before expiring each item

e priority = anumeric cost of expiring each item, where 1 isalow cost, 5 is the highest, and 3 is normal. Only
values 1 through 5 are valid.

SysCache has a config file section handler to allow configuring different expirations and priorities for different
regions. Here's an example:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<configSecti ons>
<section nanme="syscache" type="NHi bernate. Caches. SysCache. SysCacheSect i onHandl er, NHi be
</ confi gSecti ons>

<syscache>
<cache regi on="fo0" expiration="500" priority="4" />
<cache region="bar" expiration="300" priority="3" />
</ syscache>
</ confi guration>

NHibernate 1.0.2 137

Chapter 21. NHibernate.Mapping.Attributes

What isNHibernate. M apping.Attributes?

NHibernate.M apping.Attributesis an add-in for NHibernate [http://www.nhiber nate.org] contributed by
Pierre Henri Kuaté (aka KPixel); the former implementation was made by John Morris. NHibernate re-
quire mapping streams to bind your domain model to your database. Usually, they are written (and maintained)
in separated hbm.xml files.

With NHibernate.Mapping.Attributes, you can use .NET attributes to decorate your entities and this attributes
will be used to generate these mapping .hbm.xml (as files or streams). So you will no longer have to bother
with this nasty xml files;).

Content of thislibrary.

« NHibernate.Mapping.Attributes: That the only project you need (as end-user)
« Test: aworking sample using attributes and HomSerializer as NUnit TestFixture
» Generator: The program used to generate attributes and HomWriter

* Refly [http://mbunit.tigris.org/]: Thanks to Jonathan de Halleux [http://www.dotnetwiki.org/] for this library
which make it so easy to generate code

| mportant

This library is generated using the file /
src/ NHi ber nat e. Mappi ng. At t ri but es/ nhi ber nat e- mappi ng- 2. 0. xsd (which is embedded in the as-
sembly to be able to validate generated XML streams). As this file can change at each new release of
NHibernate, you should regenerate it before using it with a different version (open the Generator solu-
tion, compile and run the Generator project). But, no test has been done with versions prior to 0.8.

21.1. How to use it?

The end-user class is NHi ber nat e. Mappi ng. Attri but es. HbnSeri al i zer. This class serialize your domain
model to mapping streams. You can either serialize classes one by one or an assembly. Look at NHi ber n-
ate. Mappi ng. Attri but es. Test project for aworking sample.

The first step is to decorate your entities with attributes; you can use: [O ass], [Subcl ass], [Joi nedSubcl ass]
or [Component] . Then, you decorate your members (fields/properties); they can take as many attributes as re-
quired by your mapping. Eg:

[NHi ber nat e. Mappi ng. Attri but es. C ass]
public class Exanple

{
[NH ber nat e. Mappi ng. Attri but es. Property]

public string Nane;
}

After this step, you use NHi ber nat e. Mappi ng. Attri but es. HonSer i al i zer : (here, we use Def aul t which isan
instance you can use if you don't need/want to create it yourself).

NHibernate 1.0.2 138

http://www.nhibernate.org
http://mbunit.tigris.org/
http://www.dotnetwiki.org/

NHibernate.Mapping.Attributes

System | O MenoryStream stream = new System | O MenoryStrean(); // where the xml will be witten
NH ber nat e. Mappi ng. Attri butes. HonSeri al i zer. Defaul t. Validate = true; // Enable validation (option:
/1 Here, we serialize all decorated classes (but you can also do it class by class)
NH ber nat e. Mappi ng. Attri butes. HonSeri al i zer. Defaul t. Seri al i ze(
stream System Refl ection. Assenbly. Get Executi ngAssenbl y());
stream Position = 0; // Rew nd
NHi ber nat e. Cf g. Confi guration cfg = new NH bernate. Cfg. Configuration();
cfg. Configure();
cfg. Addl nput Strean(strean); // Use the stream here
stream C ose();
/1 Now you can use this configuration to build your SessionFactory...

Note

Asyou can see here: NHibernate.Mapping.Attributes is not (really) intrusive. Setting attributes on your
objects doesn't force you to use them with NHibernate and doesn't break any constraint on your archi-
tecture. Attributes are purely informative!

21.2. Tips

* UseHonSerializer. Validate to enable/disable the validation of generated xml streams (against NHibern-
ate mapping schema); this is useful to quickly find errors (they are written in StringBuilder Honseri al -
i zer. Error). If the error is due to this library then seeiif it is a know issue and report it; you can contribute
asolution if you solve the problem :)

e Your classes, fields and properties (members) can be private; just make sure that you have the permission to
access private members using reflection (Ref | ect i onPer i ssi onFl ag. Menber Access).

« Members of a mapped classes are also seek in its base classes (until we reach mapped base class). So you
can decorate some members of a (not mapped) base class and use it in its (mapped) sub class(es).

« For a Name taking a Syst em Type, Set the type with Name="xxx" (&S string) Or NameType=t ypeof (xxx) ;
(add "Type" to "Nane")

« By default, NET attributes don't keep the order of attributes; so you need to set it yourself when the order
matter (using the first parameter of each attribute); it is highly recommended to set it when you have more
than one attribute on the same member.

¢ Aslong as there is no ambiguity, you can decorate a member with many unrelated attributes. A good ex-
ample is to put class-related attributes (like <di scri mi nat or >) on the identifier member. But don't forget
that the order matters (the <di scri ni nat or > must be after the <i d>). The order used comes from the order
of elements in the NHibernate mapping schema. Personally, | prefer using negative numbers for these at-
tributes (if they come before!).

e You can add [Hi ber nat eMappi ng] 0N your classes to specify <hi ber nat e- mappi ng> attributes (used when
serializing the class in its stream). Y ou can also use Honser i al i zer . Hont properties (used when serializing
an assembly or atype that is not decorated with [Hi ber nat eMappi ng]).

e Instead of using astring for Di scri mi nat or Val ue (in[d ass] and [Subcl ass]), you can use any object you
want. Example:

[Subcl ass(Di scri m nat or Val ueEnunfor mat =" d", Di scri m nat or Val ueCbj ect =Di scEnum Val 1)]

Here, the object is an Enum, and you can set the format you want (the default value is "g"). Note that you

NHibernate 1.0.2 139

NHibernate.Mapping.Attributes

must put it before! For otherstypes, It simply use the ToSt ri ng() method of the object.

e If you are using members of the type Nul | abl es. Nul | abl exxx (from the library Nullables), then they will
be mapped to Nullables. NH bernate. Nul | abl exXXXType automatically; don't set Type="..." in
[Property] (leaveit null). Thanksto Michael Third for theidea:)

e Each stream generated by NHibernate.Mapping.Attributes can contain a comment with the date of the gen-
eration; Y ou may enable/disable this by using the method w i t eDat eComment .

e If you forget to provide a required xml attribute, it will obviously throw an exception while generating the
mapping.

¢ Therecommended and easiest way to map [Conponent] iSt0 Use[Conponent Property] . Thefirst stepisto
put [Corponent] on the component class and map its fields/properties. Note that you shouldn't set the Nane
in [Conponent] . Then, on each member in your classes, add [Conponent Property] . But you can't override
Access, Updat e or | nsert for each member.

There is aworking example in NHibernate.Mapping.Attributes. Test (look for the class ConpAddr ess and its
usage in others classes).

One last thing: Conponent PropertyAt tri but e inherits from Dynani cConponent At t ri but e to easily write it
just after <conponent > elementsin the XML stream.

¢ Another way to map [Conponent] isto use the way this library works: If a mapped class contains a mapped
component, then this component will be include in the class. NHibernate.Mapping.Attributes. Test contains
the classes Joi nedBaz and st uf f which both use the component Addr ess.

Basicaly, it isdone by adding

[Conponent (Nane = "MyConp")] private class SubConp : Conp {}

in each class. One of the advantages is that you can override Access, Updat e Or | nsert for each member.
But you have to add the component subclass in each class (and it can not be inherited).

* About customization. HonSeri al i zer uses HomW i ter to serialize each kind of attributes. Their methods
are virtual; so you can create a subclass and override any method you want (to change its default behavior).

Use the property HorSeri al i zer. Homw i t er to change the writer used (you may set a subclass of Hom
Witer).

Example using some thistips: (0, 1 and 2 are position indexes)

[NHi ber nat e. Mappi ng. Attri butes.1d(0, TypeType=typeof(int))] // Don't put it after [ManyToOne] !!!
[NH ber nat e. Mappi ng. Attri butes. Generator (1, C ass="uui d. hex")]

[NHi ber nat e. Mappi ng. Attri but es. ManyToOne(2, d assType=t ypeof (Foo), QuterJoi n=QuterJoi nStrategy. Tri

private Foo Entity;

Generates.

<id type="Int32">
<generator class="uuid. hex" />
</id>
<many-to-one nane="Entity" cl ass="Nanespaces. Foo, Sanpl eAssenbly" outer-join="true" />

21.3. Know issues and TODOs

NHibernate 1.0.2 140

NHibernate.Mapping.Attributes

First, read TODOs in the source code ;)
A Posi ti on property has been added to all attributes to order them. But there is still a problem:

When a parent element "p" has a child element "x" that is also the child element of another child element "c" of
"p" (preceding "x") :D Illustration:

<p>
<c>
<x />
</ c>
<x />
</ p>

In this case, when writing:

[Attributes. P(0)]
[Attributes. C(1)]
[Attributes. X(2)]
[Attributes. X(3)]

public MyType MyProperty;
X(3) will aways belong to C(1) ! (as X(2)).

It isthe case for <dynani c- conponent > and <nest ed- conposi t e- el enent >.

Another bad news is that, currently, XML elements coming after this elements can not be included in them. Eg:
There is no way put a collection in <dynani c- conponent >. The reason is that the file nhi ber nat e- map-
pi ng- 2. 0. xsd tells how elements are built and in which order, and NHibernate.M apping.Attributes use this or-
der.

Anyway, the solution would beto add ai nt Par ent Node property to BaseAttribute so that you can create areal
graph...

Actually, there is no other know issue nor planned modification. Thislibrary should be stable and complete; but
if you find a bug or think of an useful improvement, contact us!

On side note, it would be nice to write a better TestFixture than NHibernate.Mapping.Attributes.Test :D

21.4. Developer Notes

Any change to the schema (nhi ber nat e- mappi ng- 2. 0. xsd) implies:

e Checking if there is any change to do in the Generator (like updating KnowEnums / AllowMultipleVaue /
IsRoot / IsSystemType / 1sSystemEnum / CanContainltself)

e Updating /src/ NHi ber nat e. Mappi ng. At t ri but es/ nhi ber nat e- mappi ng- 2. 0. xsd (copy/paste) and run-
ning the Generator again (even if it wasn't modified)

* Running the Test project and make sure that no exception isthrown. A class/property should be modified/ad-
ded in this project to be sure that any new breaking change will be caught (=> update the reference
hbm.xml files and/or the project NHi ber nat e. Mappi ng. Attributes-1. 1. csproj)

This implementation is based on NHibernate mapping schema; so thereis probably lot of "standard schema fea-

NHibernate 1.0.2 141

NHibernate.Mapping.Attributes

tures" that are not supported...

The version of NHibernate.Mapping.Attributes should be the version of the NHibernate schema used to gener-
ate it (=> the version of NHibernate library).

In the design of this project, performance is a (very) minor goal :) Easier implementation and maintenance are
far more important.

NHibernate 1.0.2 142

Chapter 22. NHibernate.Tool.hbm2net

What is NHiber nate.Tool.hbm2net?

NHibernate.Tool.hbm2net is an add-in for NHibernate [http://www.nhibernate.org]. It makes it possible
to generate source files from hbm.xml mapping files.

In the directory NHi ber nat e. Tasks, there is a tool called Hbm2NetTask that you can use to automate your
build process (using NAnt)

NHibernate 1.0.2 143

http://www.nhibernate.org

Chapter 23. Nullables

What is Nullables?

Nullables is an add-in for NHibernate [http://www.nhibernate.org] contributed by Donald L Mull Jr.
(aka luggage). Most database systems allow base types (likei nt or bool) to be null. This means that a boolean
column can take the values O, 1 or null, where null doesn't have the same meaning as 0. But it is not possible
with .NET 1.x; abool is always either true or false.

Nullables makesit possible to use nullable base typesin NHibernate. Note that .NET 2.0 has this feature.

23.1. How to use it?

Here is a simple example that uses a Nul | abl es. Nul | abl eDat eTi ne to (optionally) store the date of birth for a
Per son.

public class Person

{

Asyou can see, DateOfBirth has the type Nul | abl es. Nul | abl eDat eTi e (instead of Syst em Dat eTi ne).

int _id;
string _nane;

Nul | abl es. Nul | abl eDat eTi ne _dateOFBirth;

publ i c Person()
{
}

public int Id
{

}

public string Nane
{

get { return this._id; }

get { return this._nane; }
set { this._nanme = val ue; }

}

public Null abl es. Nul | abl eDat eTi ne DateO'Birth

{
get { return this._dateOBirth; }

set { this. _dateOBirth = val ue; }

Hereis the mapping

<?xm version="1.0" encodi ng="utf-8" ?>
<hi ber nat e- mappi ng xml ns="ur n: nhi ber nat e- mappi ng- 2. 0" >
<cl ass nanme="Exanpl e. Per son, Exanpl e" tabl e="Person">

<id name="1d" access="fi el d. canel case-underscore" unsaved-val ue="0">

<generator class="native" />
</id>
<property nane="Nane" type="String"

<property nanme="DateOBirth" type="Nul | abl es. NH ber nat e. Nul | abl eDat eTi meType,

</ cl ass>

</ hi ber nat e- mappi ng>

| engt h="200" />

Nul | abl es. NHi bel

NHibernate 1.0.2

144

http://www.nhibernate.org

Nullables

| mportant

In the mapping, the type of DateOfBirth must be Nul | abl es. NHi ber nat e. Nul | abl eDat eTi meType.
Note that NHibernate.Mapping.Attributes handles that automatically.

Nul | abl es. NHi ber nat e. Nul | abl eXXXTypeS are wrapper types used to translate Nullables types to
Database types.

Hereis apiece of code using this example:

Person per = new Person();

text Box1l. Text = per.DateOfBirth. Val ue. ToString() // will throw an excepti on when there is no val ue.
text Box1l. Text = per.DateOfBirth. ToString() // will work. it will return an enpty string if there is n
text Box1l. Text = (per.DateOBirth. HasVal ue ? per.DateCf Birth. Val ue. ToShortDateString() : "Unknown") //

per.DateCf Birth
per.DateO Birth

new System Dat eTi ne(1979, 11, 8); // inplicit cast fromthe "plain" System DateTi ne.
new Nul | abl eDat eTi me(new Syst em Dat eTi ne(1979, 11, 8)); // the |long way.

per.DateO Birth
per.DateO Birth

null; // this works.
Nul | abl eDat eTi me. Default; // this is nore correct.

NHibernate 1.0.2 145

	NHibernate - Relational Persistence for Idiomatic .NET
	Table of Contents
	Preface
	Chapter 1. Quickstart with IIS and Microsoft SQL Server
	1.1. Getting started with NHibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Architecture
	2.1. Overview

	Chapter 3. ISessionFactory Configuration
	3.1. Programmatic Configuration
	3.2. Obtaining an ISessionFactory
	3.3. User provided ADO.NET connection
	3.4. NHibernate provided ADO.NET connection
	3.5. Optional configuration properties
	3.5.1. SQL Dialects
	3.5.2. Outer Join Fetching
	3.5.3. Custom ICacheProvider
	3.5.4. Query Language Substitution

	3.6. Logging
	3.7. Implementing an INamingStrategy
	3.8. XML Configuration File

	Chapter 4. Persistent Classes
	4.1. A simple POCO example
	4.1.1. Declare accessors and mutators for persistent fields
	4.1.2. Implement a default constructor
	4.1.3. Provide an identifier property (optional)
	4.1.4. Prefer non-sealed classes and virtual methods (optional)

	4.2. Implementing inheritance
	4.3. Implementing Equals() and GetHashCode()
	4.4. Lifecycle Callbacks
	4.5. IValidatable callback

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. XML Namespace
	5.1.2. hibernate-mapping
	5.1.3. class
	5.1.4. id
	5.1.4.1. generator
	5.1.4.2. Hi/Lo Algorithm
	5.1.4.3. UUID Hex Algorithm
	5.1.4.4. UUID String Algorithm
	5.1.4.5. GUID Algorithms
	5.1.4.6. Identity columns and Sequences
	5.1.4.7. Assigned Identifiers

	5.1.5. composite-id
	5.1.6. discriminator
	5.1.7. version (optional)
	5.1.8. timestamp (optional)
	5.1.9. property
	5.1.10. many-to-one
	5.1.11. one-to-one
	5.1.12. component, dynamic-component
	5.1.13. subclass
	5.1.14. joined-subclass
	5.1.15. map, set, list, bag
	5.1.16. import

	5.2. NHibernate Types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types
	5.2.4. Any type mappings

	5.3. SQL quoted identifiers
	5.4. Modular mapping files

	Chapter 6. Collection Mapping
	6.1. Persistent Collections
	6.2. Mapping a Collection
	6.3. Collections of Values and Many-To-Many Associations
	6.4. One-To-Many Associations
	6.5. Lazy Initialization
	6.6. Sorted Collections
	6.7. Using an <idbag>
	6.8. Bidirectional Associations
	6.9. Ternary Associations
	6.10. Heterogeneous Associations
	6.11. Collection examples

	Chapter 7. Component Mapping
	7.1. Dependent objects
	7.2. Collections of dependent objects
	7.3. Components as IDictionary indices
	7.4. Components as composite identifiers
	7.5. Dynamic components

	Chapter 8. Inheritance Mapping
	8.1. The Three Strategies
	8.2. Limitations

	Chapter 9. Manipulating Persistent Data
	9.1. Creating a persistent object
	9.2. Loading an object
	9.3. Querying
	9.3.1. Scalar queries
	9.3.2. The IQuery interface
	9.3.3. Filtering collections
	9.3.4. Criteria queries
	9.3.5. Queries in native SQL

	9.4. Updating objects
	9.4.1. Updating in the same ISession
	9.4.2. Updating detached objects
	9.4.3. Reattaching detached objects

	9.5. Deleting persistent objects
	9.6. Flush
	9.7. Ending a Session
	9.7.1. Flushing the Session
	9.7.2. Committing the database transaction
	9.7.3. Closing the ISession

	9.8. Exception handling
	9.9. Lifecyles and object graphs
	9.10. Interceptors
	9.11. Metadata API

	Chapter 10. Transactions And Concurrency
	10.1. Configurations, Sessions and Factories
	10.2. Threads and connections
	10.3. Considering object identity
	10.4. Optimistic concurrency control
	10.4.1. Long session with automatic versioning
	10.4.2. Many sessions with automatic versioning
	10.4.3. Application version checking

	10.5. Session disconnection
	10.6. Pessimistic Locking

	Chapter 11. HQL: The Hibernate Query Language
	11.1. Case Sensitivity
	11.2. The from clause
	11.3. Associations and joins
	11.4. The select clause
	11.5. Aggregate functions
	11.6. Polymorphic queries
	11.7. The where clause
	11.8. Expressions
	11.9. The order by clause
	11.10. The group by clause
	11.11. Subqueries
	11.12. HQL examples
	11.13. Tips & Tricks

	Chapter 12. Criteria Queries
	12.1. Creating an ICriteria instance
	12.2. Narrowing the result set
	12.3. Ordering the results
	12.4. Associations
	12.5. Dynamic association fetching
	12.6. Example queries

	Chapter 13. Native SQL Queries
	13.1. Creating a SQL based IQuery
	13.2. Alias and property references
	13.3. Named SQL queries

	Chapter 14. Improving performance
	14.1. Understanding Collection performance
	14.1.1. Taxonomy
	14.1.2. Lists, maps and sets are the most efficient collections to update
	14.1.3. Bags and lists are the most efficient inverse collections
	14.1.4. One shot delete

	14.2. Proxies for Lazy Initialization
	14.3. Using batch fetching
	14.4. The Second Level Cache
	14.4.1. Cache mappings
	14.4.2. Strategy: read only
	14.4.3. Strategy: read/write
	14.4.4. Strategy: nonstrict read/write

	14.5. Managing the ISession Cache
	14.6. The Query Cache

	Chapter 15. Toolset Guide
	15.1. Schema Generation
	15.1.1. Customizing the schema
	15.1.2. Running the tool
	15.1.3. Properties
	15.1.4. Using Ant
	15.1.5. Incremental schema updates
	15.1.6. Using Ant for incremental schema updates

	15.2. Code Generation
	15.2.1. The config file (optional)
	15.2.2. The meta attribute
	15.2.3. Basic finder generator
	15.2.4. Velocity based renderer/generator

	15.3. Mapping File Generation
	15.3.1. Running the tool

	Chapter 16. Example: Parent/Child
	16.1. A note about collections
	16.2. Bidirectional one-to-many
	16.3. Cascading lifecycle
	16.4. Using cascading Update()
	16.5. Conclusion

	Chapter 17. Example: Weblog Application
	17.1. Persistent Classes
	17.2. Hibernate Mappings
	17.3. NHibernate Code

	Chapter 18. Example: Various Mappings
	18.1. Employer/Employee
	18.2. Author/Work
	18.3. Customer/Order/Product

	Chapter 19. Best Practices
	Part I. NHibernateContrib Documentation
	Preface
	Chapter 20. NHibernate.Caches
	20.1. How to use a cache?
	20.2. Prevalence Cache Configuration
	20.3. SysCache Configuration

	Chapter 21. NHibernate.Mapping.Attributes
	21.1. How to use it?
	21.2. Tips
	21.3. Know issues and TODOs
	21.4. Developer Notes

	Chapter 22. NHibernate.Tool.hbm2net
	Chapter 23. Nullables
	23.1. How to use it?

