
A stable and consistently decisive collective decision

procedure

Hugo Harth

July 9, 2017

Abstract

A staged collective searching and decision-making procedure will
be introduced that evaluates several different proposals simultaneously
and refines them in subsequent steps. The procedure strives for a core-
point and is also suitable for very complex situations. The procedure
is always decisive. The preferred ranking order of decision-makers is a
public given that offers more refined information within a democracy.
Shadow votes are also possible in the same way, enabling candidate-
decision-makers to make public their preference profile.
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1 Introduction

A well-functioning democracy means an interplay between well-informed,
participating citizens and well-functioning institutions. To these institu-
tions, the majoritarian voting system is the workhorse of decision making.
This method is ideal whenever the decision at hand is restricted by two mu-
tually exclusive alternatives, such as: should cars drive on the right side of
the road, or on the left side? May’s theorem [May52] states that in such
situations the majoritarian system is the only method that meets a num-
ber of reasonable conditions. Whenever there are more alternatives, this
majoritarian system may be problematic. It cannot handle high degrees of
complexity. Instability may also arise when there are multiple parties in-
volved of which none have the majority. The quest for a majority may fail
or take a long time and majorities may turn out not to be durable. An easy
example is a case in which three parties A, B and C all have one-third of
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the seats. A and B may decide to form a majority, but there is no guar-
antee that this will be a durable situation and just a trace of mistrust or a
small opportunity may cause other majorities to arise (BC, CA). A durable
prevention of instability gives rise to the call for a strong leader, or may
even justify a dictator. History shows us that this has in fact happened in
the past. In a majoritarian system there is a constant urge to form large
parties, but this goes hand in hand with a high degree of intraparty disci-
pline and it comes at the expense of independence and a loss of diversity in
elected representatives. The other extreme is a majority so large that it has
two-thirds of the seats, which in many cases is enough to amend the con-
stitution. This situation can easily be abused, for instance to change voting
districts and voting rules in the face of “the next democratic elections”, the
substitution of key figures such as judges in a supreme court etc. In order
to rule out these problems, in this article we will discuss a decision-making
method in which several options can be considered at the same time. The
parliamentarians (or decision-makers in any other context) will rank the var-
ious suggestions and the procedure (or social choice function) subsequently
will yield a decision. A major difference from the majoritarian system is the
fact that everyone gets to have a say in the matter at hand and the fact
that the concept of opposition becomes meaningless. The working method
will be described here with its practical use in mind. One of the theoretical
difficulties in procedures with n players is the risk of manipulative use of
the procedure by giving an input different from a person’s own honest pref-
erences. This has been described as being an inevitable risk long ago. The
chance on, and the effect of, possible manipulation might not be so profound
because the procedure includes various ballots and as such makes it fairly
difficult for the manipulator to estimate the specific effect of the manipu-
lation. Furthermore the effect of any such manipulation is even harder to
predict by the potential manipulator on account of the unknown number of
ballots in advance. Moreover, it is a public procedure. All proposals and
preferred ranking orders will be made known to all participants as well as
the public. This too discourages manipulation.

2 Organisation

A given number of N voters (for instance: parliamentarians) and NP priv-
ileged voters (for instance: specially selected parliamentarians) who may
formulate proposals :
NP <= N en NP >> 2. Please notice ”who may formulate proposals”.
This means that there is no obligation to do so, such as in very simplistic
situations. In this text we will use symbols such as NP and N both to in-
dicate the set itself and its cardinal number. The context will make clear
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which of the two is being meant. The bargaining set P is the union of all
proposals that privileged voters may bring up. There are N+ observers (the
public) who cannot vote, but who can afterward elect their representatives.
Formally they do not play a role in the procedure, but they can observe
its course and they can also influence it (in the long run). This iterative
procedure (or mechanism) will start with NP (different) proposals brought
forth by the privileged voters concerning some objective/subject (this may
include a wide range of topics). The status quo solution p0 is also always
one of the alternatives. Therefore in the first ballot there will be a voting
round for the proposals {p0, p1, . . . , pNP−1

, pNP
}. There is a maximum num-

ber of ballots n. Each ballot therefore can lead to the addition of NP new
proposals. In the end of the procedure this leads to a maximum number
of n.NP + 1 proposals being assessed. After each ballot it will be decided
whether there will be another ballot. This encompasses an additional, but
also a simple vote in accordance with the q-rule, in which the number of
votes is larger than, or equals, qiN , in which 0 <= qi <= 1 at the end of
ballot i (i = 1 . . . n − 1). Moreover, the qi form a monotonically increasing
sequence in which we pose that q1 = 0, which ultimately comes down to
the fact that there is always a second ballot. An example of a q-vector for
instance is [0, 12 ,

2
3 ,

3
4 ]. In this case there are maximally 5 ballots, but for the

final ballot to occur, 3
4 of the voters have to agree at the end of the fourth

ballot. The chance that there will be a next ballot with new proposals is
therefore reduced in each subsequent phase. This urges the NP participants
(group leaders) to formulate increasingly better proposals that deviate from
their ideal position but that ultimately have a better chance of making it
through the final ballot. There is always a second ballot. After all, the first
ballot is merely an introduction round in which all voters take notice of each
other’s proposals and the ideal positions of the privileged voters.

3 Ranking procedure

During the first ballot all voters will rank all proposals. In the subsequent
ballots they will rearrange their ranking by adding the new proposals to
it. Previous rankings therefore cannot be altered. It is however possible to
assign proposals the same rank. Voter j therefore can have the following
ranking at any given time:

(pj,1...pj,g1) � (pj,g1+1...pj,g1+g2) � (pj,g1+g2+1...pj,g1+g2+g3) � . . . (1)

The social choice function (SCF) has to meet additional criteria. It has to be
possible for each voter to differentiate between a large number of proposals.
This excludes methods such as approval voting (only 0 or 1 points possible).
In the Borda method ([Tid06] [MS97] [Saa09]) points are being assigned in
accordance with a mathematical set (for instance 10, 9, . . . , 2, 1 in case of
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10 proposals). This linearly increasing sequence does however pose a few
problems. Suppose pk and pl are next to each other, but in the next ballot
pm is positioned in between, then their relative weight difference changes
from 1 to 2. Another problem may present itself close to an optimum with
a parabolic peak. The utility of new proposals to the voter will increase less
rapidly near such an optimum. Still the voter is confined to weight incre-
ments of 1, which does not adequately reflect his sense of additional utility
of these proposals near the (parabolic) optimum. That’s why the SCF is
being used, which is only based on pair-wise comparisons. These pair-wise
comparisons are being summarised in a table T. We assume that for each k
and l, given pk � pl the element Tk,l in table T is being increased with 1.
In case of equality pk = pl, both Tk,l and Tl,k will be raised by 1

2 . In case
of convention we will take the diagonal elements Tk,k = 0. Suppose a voter
ranks 4 options a, b, c and d as follows

b � (a = c) � d (2)

Then table Tj for this voter j reads:

Tj =

∣∣∣∣∣∣∣∣
0 0 1

2 1
1 0 1 1
1
2 0 0 1
0 0 0 0

∣∣∣∣∣∣∣∣ (3)

in which for instance the first sequence and the first column correspond to
a etc. The first row of T should be read as follows: The first number 0 is
unusable (a compared with itself), the second number indicates that a is
being beat by b, the third number indicates that a and c are equivalent and
the fourth number indicates that a is being chosen over d. With 100 voters,
the table could look like this:

T =

j=100∑
j=1

Tj =

∣∣∣∣∣∣∣∣
0 62 591

2 10
38 0 65 16

401
2 35 0 16

90 84 84 0

∣∣∣∣∣∣∣∣ (4)

If in the previous example the proposals e, f, g and h are also added to a
subsequent ballot, then the new ranking of this voter in question could be
as follows:

g � b � (a = c = h) � d � (e = f) (5)

The existing ranking of a, b, c and d will remain intact.
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4 Social Choice Function

We now repeatedly use the same social choice function (SCF) to come to
a decision as to which proposal to choose. We may choose a method such
as Kemeny-Young [Kem59] [You77]. Because we’re looking for maximum
stability under varying circumstances and because not the complete ranking
but rather the eventual stable solution is the ultimate goal, we will shorty
revisit another family of methods. We will look for proposals that cause the
least resistance. We will use the columns of table T. A first indicator for
resistance against a certain proposal is the total sum of all values within a
column. The winning proposal is whichever one has the lowest total sum.
We also envision an additional rule that makes sure there is always only one
winner in case of two proposals having the same total count.

min
j

k=n.NP+1∑
k=1

pj,k (6)

This case is similar to the Copeland method ([Tid06] p. 206-209) ([MS97]).
In the previous example the fourth column (option d) yields the lowest
total count, being 42. The other extreme is to count the largest element
from each column and to choose the solution from whatever column has the
lowest maximum.

min
j

max
k

pj,k (7)

In the example the fourth column is once again chosen as being the best
solution because the largest element is 16 and smaller than the largest ele-
ments of the other columns. This method is similar to the Maximin-method
([Tid06] p. 212-213) and in this case searching for a stable solution is equiv-
alent to looking for a core-point for a q-rule. One might understand this as
follows: a q-rule is a (super) majoritarian voting system in which at least a
certain fraction q of the voters has to vote in favour of a certain proposal.
A core for a q-rule is an element x from the set of all possible options for
which there is no other element that beats x with a q-majority. We can
now create a table T of this set with all pair-wise comparisons that yield a
victory and we would find that there is no single values in column x that is
large enough to form a q-majority. Please note that we allow draws to be
counted as 1

2 and that there thus is a slight deviation from this definition.
Between these two extremes there are also other options. We observe all
values in a column sorted from highest to lowest and take as a benchmark
the sum of the f% highest values (rounded to the next whole number). If we
sort each column and only use the half with the highest values, once again
the fourth column (letter d) turns out to be the winner, with a total count
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of 32.

min
j

k=100%∑
k=f%

pj,k (8)

This hybrid method is a compromise between maximal efficiency and ro-
bustness. Note that the majoritarian system is a special case and still is an
option. Alternative p0 equals the status quo or a no-vote and p1 equals a
new alternative. Table T for 100 voters could look as follows:

T =

∣∣∣∣ 0 351
2

641
2 0

∣∣∣∣ (9)

In this case the Copeland method, the maximin-method and the hybrid
methods in between all yield the same result.

5 Dynamics

In the case of this procedure we may envision two extreme situations. We
will assume that all participants can individually rank all possible proposals
(with possibly ex-aequos). The first extreme situation is the case in which
everyone knows all preference rankings from everyone else. In that case each
participant can know the solution and, assuming that everyone hands in a
ranking that truly reflects his or her own preferences, all iterations instantly
become redundant as soon as one participant proposes the ultimate best
solution. Assuming that there is only one ultimate solution. The other
extreme situation is the case in which participants have absolutely no in-
formation at all concerning the preferences of the other participants. Take
for instance the situation in which each participant has ranked a series of
codes consisting of letters and numbers: 8Z9C � BRJ � WXH5 � .... In
this case the only rational way of working for each participant is to bring
up his first choice in the first round, his second-best choice in the second
round etc. After each ballot our method yields a total ranking of the pro-
posals with the accompanying maximum element of this ranking. Indeed,
it is possible to reiterate the social choice function (SCF) and in this way
realise a social choice correspondence (SCC). Namely by first determining
a first element using the complete table T and by subsequently applying
this procedure to T with the column and row of the winner of the previous
iteration deleted. Note that a voter’s initial ranking of the proposals isn’t
allowed to be changed during the procedure. However, the collective ranking
reached through the repeated application of the SCF may differ from rank-
ings from previous steps (although it often will not, or will only to a small
degree). This can be avoided by changing the rules for setting up an SCC,
so that the old ranking of the previous step as well as the new ranking of the
newly added elements remain in the merged order [Mas99]. The merging
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into the old order will take place from the largest of the new elements to the
smallest. Whenever there are two or more ways to merge, each new element
will be added into the ranking as far upfront as possible. This ranking will
be expanded with each new ballot and the maximum element will either
remain in the first place or it will be replaced by a new maximum element.
An (extreme) example: First ballot with the ranking to be preserved:

a � b � c � d (10)

Second ballot:
e � d � f � b � g � c � h � a (11)

Additional ranking to be preserved:

e � f � g � h (12)

e will certainly be the first. d will be followed by f, but because the order of
the first ballot has to be respected, f will also be behind a, b and c. Final
order:

e � a � b � c � d � f � g � h (13)

For a large bargaining set Card(P) > n.NP the chance of improvement
is almost certainly positive with each ballot. The situation in which each
participant does have some degree of information on the preferences of the
others is more realistic. As an example we will take a two-dimensional
situation with 6 participants A, B, C, D and F who are in the indicated
positions (see figure).
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A

B

CD

E

F

?

A'

A"

Their utility functions diminish with Euclidian distance from their rel-
ative positions. The idea is to determine the optimal point that can be
reached with this SCF using the method described here. Player A suspects
they will eventually end up at ? However, he reluctantly leaves his ideal posi-
tion A. To him, all positions on a circle with centre A are equally good. But
within the smallest circle he best chooses point A’ because this is situated
closest to the suspected balance point ?. Of course he could opt to venture
further from his ideal point and choose point A” on the larger circle. Each
participant has more risky and less risky alternatives. The participants are
at risk of their proposals not being preserved and that there will be no next
ballot. By choosing a more realistic point A”, a participant improves his
own chances. Participant A could choose point ? right from the start, but
he would have to keep in mind that he might also misjudge the situation and
thus agree with a solution that is too favourable for the other participants.
In a procedure with humans we should restrict ourselves to a finite number
of steps. The maximum number of steps should at least be sufficient to bring
most decisions to a good end. Assuming that the utility function of each
voter is limited (bounded utility) and thus that the last steps will usually
yield less improvement (diminishing returns), we have reason to be opti-
mistic. The increasing q-values per step avoid procrastination, they force
each privileged voter to come up with solutions close to the suspected opti-
mum as soon as possible. Setting the number of steps and the q-values right
can only be achieved through acquiring practical experience. For constitu-
tional amendments the maximum number could be increased and an SCF
could be selected that more closely resembles the maximin-method.
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6 Complexity

Here we will look at complexity in the same way as the article by Saari
[Saa97]. In this article too NP = N , and stability of the core will be as-
sessed for a q-rule. The maximin-method (above) is an implementation to
find such a core. However, using this method it is impossible to know in
advance which “q-value” can be reached in the best case. We assume that
all proposals can be formulated in a K-dimensional space. Moreover we
assume that each participant has an ideal point in this space as well as
a monotonously constantly decreasing utility function that relates to the
monotonously increasing distance along a line from the ideal point. Saari’s
article discusses conditions for stability of the core, namely whether a core
can continue to exist of ideal points of utility functions change. For sta-
bility it is necessary that K ≤ (2q − 1)NP [Saa97]. Essentially this means
that in case of increasing complexity K, the number of voters NP has to
increase proportionally. The procedure is a collective searching method in
a K-dimensional space. If the NP voters wish to refine the process, they
could use the method by Nelder and Mead [NM65]. This method requires
availability of a simplex with K + 1 points and function values with ev-
ery iteration. When viewed in this context, K + 1 different viewpoints are
also a minimum requirement in order to be able to make progress in a K-
dimensional space. Nelder and Mead’s method assumes that function values
of the function to be optimised are available. In case of large complexity
(large value for K), the thorough studying and ranking of proposals will
become increasingly difficult. In that case it is possible to offer each voter a
minimal set of proposals that he/she is obliged to rank. In addition it is still
allowed to rank other proposals. The ranking of the obligatory proposals
will take place using an incomplete balanced block design (IBBD). Such a
block for instance contains c proposals. An example of Chochran and Cox
[CC57] with a total of 9 proposals, 12 voters who rank 3 proposals each:
(1 2 3) (4 5 6) (7 8 9)
(1 4 7) (2 5 8) (3 6 9)
(1 5 9) (7 2 6) (4 8 3)
(1 8 6) (4 2 9) (7 5 3)

Each voter is assigned a block at random. Therefore it is possible that block
1 is assigned to voter 5. This voter may find proposal 5 excellent and nothing
keeps him from also ranking proposal 5 in addition to the three obligatory
proposals (1,2,3). In general this will mean that there are N blocks (the
same as the number of voters). The following relationship exists for each
IBBD: c.N = r.NP , in which r indicates replicates (the number of times a
proposal has to be assessed by a voter). This means that a proposal pi is
included in r blocks. In order to get to a ”balanced” design, all proposals
pi would have to come past in combination with all of the other proposals
pj (i.e. all pairs) an equal amount of times. This is important because this
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procedure is based on pair-wise comparisons. There is one condition

λ =
r(c− 1)

NP − 1
(14)

In the above example λ = 1. Imagine that in a complex situation each
step includes 100 proposals ((NP = 100)) and that we want each proposal
to be viewed at least 100 times (r = 100) and that each voter can pro-
cess a maximum of 25 proposals (c = 25). From N = NP .r

c it follows that
N ≥ 100.100

25 = 400. In this case it holds true that λ = 100.24
99 = 24.24.

Suppose we want to raise the value of λ, then we have no choice than to
also raise r and therefore also N. N will become 1650. It is clear that we
can process any degree of high complexity (in the previous sense) as long
as we can increase the number of voters. This is in stark contrast to the
go-to way of dealing with complex situations in classical democracies, which
is instituting an (all) powerful president or Führer. It is impossible to find
an exact IBBD for all random figures. But it is always possible to set up
a block design that does approximate the ideal situation well. One of the
results is that the table T will include inequations. The inequations will be
solved by simultaneously and repeatedly adding a 1

2 to Ti1,j1 and Tj1,i1 until
Ti1,j1 + Tj1,i1 = N .

7 Incomplete ranking

What if a voter chooses not to participate in a ballot? In that case all pairs
that have not been compared will be assigned 1

2 . The same will happen
when an IBBD is being used. A T-table like that isn’t necessarily consistent
anymore with a certain order. If we review this example:

g � b � (a = c = h) � d � (e = f) (15)

Then the pair-wise table is

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1
2 1 1 1 0 1

2
1 0 1 1 1 1 0 1
1
2 0 0 1 1 1 0 1

2
0 0 0 0 1 1 0 0
0 0 0 0 0 1

2 0 0
0 0 0 0 1

2 0 0 0
1 1 1 1 1 1 0 1
1
2 0 1

2 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(16)
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In case of non-participation in the first ballot, this table will be:

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2 0 0
1
2

1
2

1
2

1
2

1
2 0 0 0

1
2

1
2

1
2

1
2 1 1 0 1

1
2

1
2

1
2

1
2 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)

At that moment the individual ranking is lost. This is an impossible ranking
because a=g and a=h but the same can happen when using IBBDs. Also
note that whenever an SCF is being used to also record a ranking among
the various proposals, that this order isn’t necessarily retained in the next
ballot.

8 Weighted voting : the council of EU ministers

The Council of the European Union currently makes decisions using the
qualified majority voting method. It is possible to adjust the method of
pair-wise comparisons to the relative weight of each country. In that case
the numbers in each Tj table (j indicates the country) will be multiplied
with, for instance, the number of inhabitants of that respective country.
Some of the 28 countries, sorted from small to large in millions of inhabi-
tants on 1 January 2016 (source Eurostat).

Germany 82, 175, 684
France 66, 759, 950

UnitedKingdom 65, 382, 556
Italy 60, 665, 551
. . . . . .

Estonia 1, 315, 944
Cyprus 848, 319

Luxembourg 576, 249
Malta 434, 403

The pair-wise table T would be (in millions):

T = 82.2 TGer + 66.8 TFra + . . . + 0.6 TLux + 0.4 TMal (18)

9 Independent democracies

9.1 English

Assume there are two independent democracies that pass through the same
aforementioned voting ballots simultaneously. To what degree can they
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come to common solutions? Democracy A works with a growing number
of proposals PA throughout the procedure, and for B this is PB. However,
after each ballot, the voters of both parliaments create rankings from the
set PA

⋃
PB. Assume that the best solution from the ”own set” for A

is pA,opt and for B is pB,opt. Now consider the sets PA,opt+ and PB,opt+

which respectively consist of the solution pA,opt and all solutions that are
ranked higher in the case of A and the same for the set PB,opt+ for B. If
PA,opt+

⋂
PB,opt+ 6= ∅, then there is a better common solution available.

In order to find this common solution, one may merge these two pair-wise
tables TA and TB with a weight factor previously agreed on per table (e.g.
taking into account the number of inhabitants). This method also teaches
us that two independent democracies may in this way sometimes implement
a common proposal, and may sometimes not. However in this way they miss
out on certain opportunities, potentially PA,opt+ 6= ∅ of PB,opt+ 6= ∅ each
time. Merging of A and B may be beneficial if A and B are certain that
deciding together on average is beneficial for both parties. After a while
this method may provide insight into this mechanism and both parties may
agree to adopt this system.

9.2 Example

Suppose Democracy A with own propositions a, b and c and democracy Z
with own propositions x, y and z. A orders all the propositions as

a � x � b � y � c � z (19)

and Z comes out the order

x � a � y � b � z � c (20)

then there is no common solution. PA,opt+ = {a} and PZ,opt+ = {x} and
PA,opt+

⋂
PZ,opt+ = ∅ When A and Z vote together and can add proposi-

tions, say proposition m then a possible result might be :

m � x � a � y � b � z � c (21)

which is an improvement for both.

10 Possible consequences and additional possibil-
ities

10.1 Observability and transparance

A nice and unique result of this method is the fact that the public can now
take notice of the preferred rankings of their elected representatives. Voters
can now assess which elected representative within a party fits their personal
profile best.
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10.2 Shadow-parliament

A new possibility is a shadow parliament in which future candidates can take
part in the same parliamentarian votes. There they can present themselves
and the public may use this information in the following elections.

10.3 Smaller parties

In a majoritarian system all parties want to become as large as they possibly
can in order to become ”incontournable” and preferably to get the absolute
majority. With the procedure proposed here this will be less relevant. After
all, everyone and each party now plays a role in the final decision-making
procedure. Setting a minimal scale might be beneficial but it will rather be
a matter of associations of politically active candidates. A minimum size
requirement will still more readily gain the public’s trust rather than the
isolated actions of individuals. And a certain scale will also facilitate a bet-
ter organisation (such as a common secretariat, etc ...).
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