Start Tweedes Derdes Vierdes


zoeken

TopStartpagina

 

 

 

 

Eerste oefeningen...

  • Wat je weet over sinus en cosinus?

  • Oefenen met codewoorden - uitleg met filmpje: klik hier.

  • Maak hier voldoende oefeningen.

  • Los hier de rechthoekige driehoeken op.

 

Vraagstukken...

  • Los jij dit probleem zelf eens op?

    Kijk daarna pas naar de uitleg.

  • Nog eentje

    Uitleg nodig?

  • en nog

    met uitleg...

  • Toets jezelf! Klik hier.

3° trimesterTopLesopdrachtenStartpagina

Bijkomende oefeningen met de rekenmachine... met oplossingen

  •  Bereken met behulp van je rekentoestel 

1)   25°36’14’’ + 23°14’45’’ =                                             48°50’59’’

2)   45°23’25’’ + 24°32’46’’ =                                             69°56’11’’

3)   54°36’25’’ + 12°35’26’’ =                                             67°11’51’’

4)   59°41’42’’ + 12°34’45’’ =                                             72°16’27’’

5)   123°42’17’’ - 75°24’36’’ =                                            48°17’41’’

6)   98°14’23’’ - 49°23’56’’ =                                              48°50’27’’

7)   111°12’46’’ - 89°43’45’’ =                                            21°29’01’’

8)   78°16’15’’ - 58°42’25’’ =                                              19°33’50’’

9)   37°24’25’’ + 64°56’45’’ - 45°19’58’’ =                        57°01’12’’

10) 45°08’09’’ - 44°56’24’’ +12°00’14’’ =                         12°11’59’’

11)  98°12’47’’ + 09°47’13’’ - 18°13’48’’ =                       89°46’12’’

12) 87°09’12’’ - 12°25’18’’ - 52°16’52’’ =                         22°27’02’’

13) 24°43’26’’ x 2 =                                                             49°26’52’’

14) 48°24’35’’ x 3 =                                                             145°13’45’’

15) 23°36’41’’ x 4 =                                                             94°26’44’’

16) 42°29’42’’ x 5 =                                                             212°28’30’’

17) 91°31’30’’ : 2 =                                                              45°45’45’’

18) 70°44’15’’ : 3 =                                                              23°34’45’’

19) 96°51’00’’ : 4 =                                                              24°12’45’’

20) 63°49’40’’ : 5 =                                                              12°45’56’’

21) 37°14’12’’ x 3/4 =                                                          27°55’39’’

22) 41°12’45’’ x 3/5 =                                                          24°43’39’’

23) 82°46’18’’ : 3/5 =                                                           137°57’10’’

24) 89°24’30’’ : 5/3 =                                                           53°38’42’’

3° trimesterTopLesopdrachtenStartpagina
  • Bereken met behulp van je rekentoestel 

1)   sin 23°15’ =      0,39474                  16)   sin 45°23’34’’ =           0,71194

2)   sin 35°20’ =      0,57833                  17)   cos 23°45’42’’ =          0,91523

3)   cos 47°54’ =     0,67043                  18)   sin 75°13’20’’ =           0,96692

4)   cos 58°12’ =     0.52696                  19)   tan 25°14’52’’ =          0,47158

5)   tan 25°15’ =     0,47163                   20)   cos 75°15’15’’ =         0,25453

6)   tan 75°25’ =     3,84364                   21)   tan 12°54’12’’ =          0,22909

7)   sin 34°30’ =      0,56641                  22)   cos 32°25’35’’ =          0,84408

8)   cos 55°30’ =     0,56641                  23)   sin 57°34’25’’ =           0,84408

Waarom zijn de resultaten van oefening 7 en 8 gelijk? Ook die van 22 en 23?

9)   cos 27°45’ =     0,88499                  24)   sin 25°29’40’’ =           0,43042

10) sin 62°15’ =      0,88499                  25)   cos 64°30’20’’ =          0,43042

Waarom zijn de resultaten van oefening 9 en 10 gelijk? Ook die van 24 en 25?
Kan je hierbij een regel formuleren?

11)  tan 44°44’ =    0,99073                  26)   tan 63°25’19’’ =           1,99887

12) tan 45°45’ =     1,02653                   27)   tan 73°25’19’’ =          3,35913

13) sin 78°15’ =      0,97905                   28)   sin 80°50’50’’ =          0,98727

14) cos 78°15’ =     0,20364                   29)   cos 80°50’50’’ =         0,15907

15) tan 78°15’ =     4,80769                   30)   tan 80°50’50’’ =          6,20659

De hierboven geformuleerde regel zou moeten zijn:
De cosinus van een hoek is gelijk aan de sinus van de complementaire hoek en omgekeerd.

3° trimesterTopLesopdrachtenStartpagina
  • Bereken telkens de hoek Β met behulp van je ZRM tot op 1’’ nauwkeurig

1)       sin Β = 0,12578                                 Β = 7°13’33’’

2)      sin Β = 0,45268                                  Β = 26°54’57’’

3)      sin Β = 0,78562                                  Β = 51°46’41’’

4)      cos Β = 0,78541                                Β = 38°14’29’’

5)      cos Β = 0,14895                                Β = 81°26’21’’

6)      cos Β = 0,56812                                Β = 55°22’51’’

7)      tan Β = 0,45871                                 Β = 24°38’29’’

8)      tan Β = 0,97643                                 Β = 44°19’03’’

9)      tan Β = 1,25687                                 Β = 51°29’36’’

10)   sin Β = 0,79315                                 Β = 52°28’51’’

11)    cos Β = 0,79315                               Β = 37°31’09’’

12)   sin Β = 0,12121                                 Β = 6°57’43’’

13)   tan Β = 7,77777                                Β = 82°40’25’’

14)   cos Β = 0,98765                                Β = 9°00’51’’

15)   sin Β = 7/12                                        Β = 35°41’07’’

16)   cos Β  = 163/234                               Β = 45°50’48’’

17)   tan Β = 245/198                                 Β = 51°03’22’’

3° trimesterTopLesopdrachtenStartpagina
  • Bepaal het teken van de cosinus en de sinus van de volgende hoeken.

 

hoek

cos

sin

 

hoek

cos

sin

 

hoek

cos

sin

 

a

20°

 

 

e

-114°

 

 

i

192°

 

 

b

-20°

 

 

f

-312°

 

 

j

-100°

 

 

c

153°

 

 

g

221°

 

 

k

440°

 

 

d

-72°

 

 

h

-120°

 

 

l

240°

 

 

  • Geef het kwadrant waarin het beeldpunt van elk van de volgende georiλnteerde hoeken in een goniometrische cirkel zich bevindt.

 

hoek

kw.

 

hoek

kw.

 

hoek

kw.

 

hoek

kw.

 

a

30°

 

e

-227°

 

i

450°

 

m

392°

 

b

-60°

 

f

114°

 

j

-450°

 

n

630°

 

c

125°

 

g

-180°

 

k

720°

 

o

-1080°

 

d

315°

 

h

135°

 

l

-510°

 

p

990°

 

 

3° trimesterTopLesopdrachtenStartpagina

 
An Vandersteene - Wiskundehoekske van steentje - ASO
Laatst bijgewerkt: 03/06/2012 .